Genetic Toxicology

Author:

Kramer P J1

Affiliation:

1. Institute of Toxicology, Merck KGaA, Darmstadt, Germany

Abstract

Abstract Systems for testing genetic toxicology are components of carcinogenic and genetic risk assessment. Present routine genotoxicity-testing is based on at least 20 years of development during which many different test systems have been introduced and used. Today, it is clear that no single test is capable of detecting all genotoxic agents. Therefore, the usual approach is to perform a standard battery of in-vitro and in-vivo tests for genotoxicity. Work-groups of the European Union (EU), the Organization for Economic Co-operation and Development (OECD), and, very recently, the work-group of the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) have defined such standard battery tests. These and some currently used supplementary or confirmatory tests are briefly discussed here. Additional test systems for the assessment of genotoxic and carcinogenic hazard and risk are seriously needed. These tests must be more relevant to man than are current assays and less demanding in respect of cost, time and number of animals. Another aspect for reassessment derives from the actual situation in the pharmaceutical industry. Companies have to prepare for the world economy of the 21st century. Therefore, pharmaceutical research is speeding up tremendously by use of tools such as genomics, combinatorial chemistry, high throughput screening and proteomics. Toxicology and genotoxicology need to re-evaluate their changing environment and must find ways to respond to these needs. In conclusion, genetic toxicology needs to answer questions coming from two major directions: hazard and risk identification and high throughput testing.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

Reference27 articles.

1. Methods for detecting carcinogens and mutagens with the Salmonellal mammalian-microsome mutagenicity test;Ames;Mutat. Res.,1975

2. Stress responses to DNA damaging agents in the human colon carcinoma cell-line, RKO;Beard;Mutat. Res.,1996

3. Role of three cancer ‘master genes’ p53, bc12 and c-myc on the apoptotic process;Chiarugi;Tumori,1996

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3