Opiate-receptor mediated changes in monoamine synthesis in rat brain

Author:

Garcia-Sevilla J A1,Ahtee Liisa1,Magnusson T1,Carlsson A1

Affiliation:

1. Department of Pharmacology, University of Göteborg, Göteborg, Sweden

Abstract

Abstract The effects of morphine, β-endorphin, naloxone and naltrexone on the rate of tyrosine and tryptophan hydroxylation were investigated in vivo by measuring the accumulation of dopa and 5-hydroxytryptophan (5-HTP) in different brain regions of rats after inhibition of the aromatic L-amino acid decarboxylase. The cerebral concentrations of tyrosine and tryptophan were also measured. Morphine (3–30 mg kg−1) increased the accumulation of dopa dose-dependently (25–50%) in the dopamine-rich areas (limbic forebrain and corpus striatum). In the noradrenaline-predominant parts of the brain (containing hemispheres, diencephalon and lower brain stem) only the highest dose of morphine (30 mg kg−1) significantly increased dopa formation (47%). Similarly to morphine, intracerebroventricularly injected β-endorphin (5–10 βg per rat) increased the formation of dopa. This increase was doubled in limbic forebrain, corpus striatum and cerebral hemispheres. Doses of 10 to 20 μg of β-endorphin were needed to increase dopa accumulation in the diencephalon and the lower brain stem. Naloxone antagonized the β-endorphin-induced increases in dopa. But naloxone and naltrexone (10–100 mg kg−1) decreased the dopa formation in the dopamine-rich areas (about 20–25 %) but not in the noradrenaline-predominant areas. Morphine (30 mg kg−1) and β-endorphin (5 μg per rat) increased the accumulation of 5-HTP whereas naloxone and naltrexone (10 mg kg−1) tended to decrease its formation. Morphine and β-endorphine increased the concentrations of tyrosine and tryptophan, and naloxone decreased the cerebral tryptophan concentration. These results show that the effects of a narcotic agonist (morphine) and of pure narcotic antagonists (naloxone and naltrexone) on the synthesis of dopamine and 5-HT are opposite to each other. Furthermore, the effects of β-endorphine on brain monoamine synthesis are remarkably similar to those of morphine. Thus, it is probable that opiate receptors and their endogenous ligands are involved in the regulation of dopamine and 5-HT synthesis.

Publisher

Oxford University Press (OUP)

Subject

Pharmaceutical Science,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3