NtG3BPL1 confers resistance to chilli veinal mottle virus through promoting the degradation of 6K2 in tobacco

Author:

Peng Qiding1,Jiao Bolei1,Cheng Yongchao1,Yuan Bowen1,Zhou Jingya1,Cai Jingliu1,Jiang Ning2,Lin Honghui1,Xi Dehui1ORCID

Affiliation:

1. Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of Education, College of Life Sciences Sichuan University Chengdu 610065 Sichuan P.R. China

2. Agronomic Research Center Yunnan Academy of Tobacco Agricultural Sciences Kunming 650021 Yunnan P.R. China

Abstract

SUMMARYThe RNA regulatory network is a complex and dynamic regulation in plant cells involved in mRNA modification, translation, and degradation. Ras‐GAP SH3 domain‐binding protein (G3BP) is a scaffold protein for the assembly of stress granules (SGs) and is considered an antiviral component in mammals. However, the function of G3BP during virus infection in plants is still largely unknown. In this study, four members of the G3BP‐like proteins (NtG3BPLs) were identified in Nicotiana tabacum and the expression levels of NtG3BPL1 were upregulated during chilli veinal mottle virus (ChiVMV) infection. NtG3BPL1 was localized in the nucleus and cytoplasm, forming cytoplasmic granules under transient high‐temperature treatment, whereas the abundance of cytoplasmic granules was decreased under ChiVMV infection. Overexpression of NtG3BPL1 inhibited ChiVMV infection and delayed the onset of symptoms, whereas knockout of NtG3BPL1 promoted ChiVMV infection. In addition, NtG3BPL1 directly interacted with ChiVMV 6K2 protein, whereas 6K2 protein had no effect on NtG3BPL1‐derived cytoplasmic granules. Further studies revealed that the expression of NtG3BPL1 reduced the chloroplast localization of 6K2‐GFP and the NtG3BPL1‐6K2 interaction complex was localized in the cytoplasm. Furthermore, NtG3BPL1 promoted the degradation of 6K2 through autophagy pathway, and the accumulation of 6K2 and ChiVMV was affected by autophagy activation or inhibition in plants. Taken together, our results demonstrate that NtG3BPL1 plays a positive role in tobacco resistance against ChiVMV infection, revealing a novel mechanism of plant G3BP in antiviral strategy.

Funder

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Sichuan Province

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3