The conserved microRNA‐229 family controls low‐insulin signaling and dietary restriction induced longevity through interactions with SKN‐1/NRF2

Author:

Matai Latika1,Stathis Thalyana2,Lee Jonathan D.1,Parsons Christine2,Saxena Tanvi1,Shlomchik Kovi2,Slack Frank J.1ORCID

Affiliation:

1. HMS Initiative for RNA Medicine, Department of Pathology Beth Israel Deaconess Medical Center, Harvard Medical School Boston Massachusetts USA

2. Department of Molecular, Cellular and Developmental Biology Yale University New Haven Connecticut USA

Abstract

AbstractSeveral microRNAs have emerged as regulators of pathways that control aging. For example, miR‐228 is required for normal lifespan and dietary restriction (DR) mediated longevity through interaction with PHA‐4 and SKN‐1 transcription factors in Caenorhabditis elegans. miR‐229,64,65, and 66, a cluster of microRNAs located adjacent to each other on chromosome III, are in the same family as miR‐228, albeit with slight differences in the miR‐228 seed sequence. We demonstrate that, in contrast to the anti‐longevity role of miR‐228, the miR‐229‐66 cluster is required for normal C. elegans lifespan and for the longevity observed in mir‐228 mutants. miR‐229‐66 is also critical for lifespan extension observed under DR and reduced insulin signaling (IIS) and by constitutive nuclear SKN‐1. Both DR and low‐IIS upregulate the expression of the miRNA cluster, which is dependent on transcription factors PHA‐4, SKN‐1, and DAF‐16. In turn, the expression of SKN‐1 and DAF‐16 requires mir‐229,64,65,66. miR‐229‐66 targets the odd‐skipped‐related transcription factor, odd‐2 to regulate lifespan. Knockdown of odd‐2 increases lifespan, suppresses the short lifespan of mir‐229,64,65,66(nDf63) III mutants, and alters levels of SKN‐1 in the ASI neurons. Together with SKN‐1, the miRNA cluster also indirectly regulates several genes in the xenobiotic detoxification pathway which increases wild‐type lifespan and significantly rescues the short lifespan of mir‐229,64,65,66(nDf63) III mutants. Thus, by interacting with SKN‐1, miR‐229‐66 transduces the effects of DR and low‐IIS in lifespan extension in C. elegans. Given that this pathway is conserved, it is possible that a similar mechanism regulates aging in more complex organisms.

Publisher

Wiley

Subject

Cell Biology,Aging

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3