DNA repair in cardiomyocytes is critical for maintaining cardiac function in mice

Author:

de Boer Martine1ORCID,te Lintel Hekkert Maaike1,Chang Jiang2,van Thiel Bibi S.234,Martens Leonie5,Bos Maxime M.6,de Kleijnen Marion G. J.1,Ridwan Yanto27,Octavia Yanti1,van Deel Elza D.8,Blonden Lau A.1,Brandt Renata M. C.2,Barnhoorn Sander2,Bautista‐Niño Paula K.49,Krabbendam‐Peters Ilona1,Wolswinkel Rianne10,Arshi Banafsheh6,Ghanbari Mohsen6,Kupatt Christian111213,de Windt Leon J.1415,Danser A. H. Jan4,van der Pluijm Ingrid23,Remme Carol Ann10,Stoll Monika516,Pothof Joris2,Roks Anton J. M.4,Kavousi Maryam6,Essers Jeroen237,van der Velden Jolanda817,Hoeijmakers Jan H. J.21819,Duncker Dirk J.1ORCID

Affiliation:

1. Division of Experimental Cardiology, Department of Cardiology Thoraxcenter, Erasmus MC Rotterdam The Netherlands

2. Department of Molecular Genetics, Erasmus MC Rotterdam The Netherlands

3. Department of Vascular Surgery, Erasmus MC Rotterdam The Netherlands

4. Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC Rotterdam The Netherlands

5. Department of Genetic Epidemiology, Institute of Human Genetics University Hospital Münster Münster Germany

6. Department of Epidemiology, Erasmus MC Rotterdam The Netherlands

7. Department of Radiotherapy, Erasmus MC Rotterdam The Netherlands

8. Department of Physiology, Amsterdam Cardiovascular Sciences Amsterdam UMC, Vrije Universiteit Amsterdam Amsterdam The Netherlands

9. Centro de Investigaciones Fundación Cardiovascular de Colombia‐ FCV Bucaramanga Colombia

10. Department of Clinical and Experimental Cardiology, Heart Center Academic Medical Center, University of Amsterdam Amsterdam The Netherlands

11. I. Medizinische Klinik und Poliklinik University Clinic Rechts der Isar, Technical University of Munich Munich Germany

12. DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance Munich Germany

13. Walter‐Brendel‐Centre for Experimental Medicine Ludwig Maximilian University of Munich Munich Germany

14. Department of Molecular Genetics, Faculty of Health, Medicine and Life Sciences Maastricht University Maastricht The Netherlands

15. Faculty of Science and Engineering Maastricht University Maastricht The Netherlands

16. Department of Biochemistry, Cardiovascular Research Institute Maastricht Maastricht University Maastricht The Netherlands

17. Netherlands Heart Institute Utrecht The Netherlands

18. CECAD Forschungszentrum Universität zu Köln Köln Germany

19. Princess Máxima Center for Pediatric Oncology, Genome Instability and Nutrition ONCODE Institute Utrecht The Netherlands

Abstract

AbstractHeart failure has reached epidemic proportions in a progressively ageing population. The molecular mechanisms underlying heart failure remain elusive, but evidence indicates that DNA damage is enhanced in failing hearts. Here, we tested the hypothesis that endogenous DNA repair in cardiomyocytes is critical for maintaining normal cardiac function, so that perturbed repair of spontaneous DNA damage drives early onset of heart failure. To increase the burden of spontaneous DNA damage, we knocked out the DNA repair endonucleases xeroderma pigmentosum complementation group G (XPG) and excision repair cross‐complementation group 1 (ERCC1), either systemically or cardiomyocyte‐restricted, and studied the effects on cardiac function and structure. Loss of DNA repair permitted normal heart development but subsequently caused progressive deterioration of cardiac function, resulting in overt congestive heart failure and premature death within 6 months. Cardiac biopsies revealed increased oxidative stress associated with increased fibrosis and apoptosis. Moreover, gene set enrichment analysis showed enrichment of pathways associated with impaired DNA repair and apoptosis, and identified TP53 as one of the top active upstream transcription regulators. In support of the observed cardiac phenotype in mutant mice, several genetic variants in the ERCC1 and XPG gene in human GWAS data were found to be associated with cardiac remodelling and dysfunction. In conclusion, unrepaired spontaneous DNA damage in differentiated cardiomyocytes drives early onset of cardiac failure. These observations implicate DNA damage as a potential novel therapeutic target and highlight systemic and cardiomyocyte‐restricted DNA repair‐deficient mouse mutants as bona fide models of heart failure.

Funder

Deutsche Forschungsgemeinschaft

National Institutes of Health

ZonMw

Publisher

Wiley

Subject

Cell Biology,Aging

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3