Machine learning models for orthokeratology lens fitting and axial length prediction

Author:

Xu Shuai1,Yang Xiaoyan234,Zhang Shuxian234,Zheng Xuan1,Zheng Fang1,Liu Yin5,Zhang Hanyu5ORCID,Ye Qing1,Li Lihua234ORCID

Affiliation:

1. Key Laboratory of Weak‐Light Nonlinear Photonics, Ministry of Education, School of Physics and TEDA Applied Physics Nankai University Tianjin China

2. Tianjin Eye Hospital Optometric Center Tianjin China

3. Tianjin Eye Hospital Tianjin China

4. Nankai University Affiliated Eye Hospital Nankai University Tianjin China

5. School of Medicine Nankai University Tianjin China

Abstract

AbstractPurposeIn order to improve the efficiency of orthokeratology (OK) lens fitting and predict the axial length after 1 year of OK lens wear, machine learning models were proposed.MethodsClinical data from 1302 myopic subjects were collected retrospectively, and two machine learning models were implemented. Demographic and corneal topographic data were collected as input variables. The output variables were the parameters of the OK lens and the axial length after 1 year. Eighty percent of input variables was used as the training set and the remaining 20% was used as the validation set. The first alignment curve (AC1) of the OK lenses, deduced using machine learning models and formula calculation, were compared. Multiple regression models (support vector machine, Gaussian process, decision tree and random forest) were used to predict the axial length after 1 year. In addition, we classified data based on lens brand, and carried out more detailed parameter fitting and analysis for spherical and toric OK lenses.ResultsThe OK lens fitting model showed higher (R2 = 0.93) and lower errors (mean absolute error [MAE] = 0.19, mean square error [MSE] = 0.09) when predicting AC1, compared with the formula calculation (R2 = 0.66, MAE = 0.44, MSE = 0.25). The machine learning model still had high R2 values ranging from 0.91 to 0.96 when considering the brand and design of the OK lenses. Further, the R2 value for the axial length prediction model was 0.94, which indicated that the machine learning model had high accuracy and good robustness.ConclusionThe OK lens fitting model and the axial length prediction model played an important role in guiding OK lens fitting, with high accuracy and robustness in prediction performance.

Publisher

Wiley

Subject

Sensory Systems,Optometry,Ophthalmology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3