Scalable semantic 3D mapping of coral reefs with deep learning

Author:

Sauder Jonathan12ORCID,Banc‐Prandi Guilhem2ORCID,Meibom Anders23ORCID,Tuia Devis1ORCID

Affiliation:

1. Environmental Computational Science and Earth Observation Laboratory École Polytechnique Fédérale de Lausanne Lausanne Switzerland

2. Laboratory for Biological Geochemistry École Polytechnique Fédérale de Lausanne Lausanne Switzerland

3. Center for Advanced Surface Analysis University of Lausanne Lausanne Switzerland

Abstract

Abstract Coral reefs are among the most diverse ecosystems on our planet, and essential to the livelihood of hundreds of millions of people who depend on them for food security, income from tourism and coastal protection. Unfortunately, most coral reefs are existentially threatened by global climate change and local anthropogenic pressures. To better understand the dynamics underlying deterioration of reefs, monitoring at high spatial and temporal resolution is key. However, conventional monitoring methods for quantifying coral cover and species abundance are limited in scale due to the extensive manual labor required. Although computer vision tools have been employed to aid in this process, in particular structure‐from‐motion (SfM) photogrammetry for 3D mapping and deep neural networks for image segmentation, analysis of the data products creates a bottleneck, effectively limiting their scalability. This paper presents a new paradigm for mapping underwater environments from ego‐motion video, unifying 3D mapping systems that use machine learning to adapt to challenging conditions under water, combined with a modern approach for semantic segmentation of images. The method is exemplified on coral reefs in the northern Gulf of Aqaba, Red Sea, demonstrating high‐precision 3D semantic mapping at unprecedented scale with significantly reduced required labor costs: given a trained model, a 100 m video transect acquired within 5 min of diving with a cheap consumer‐grade camera can be fully automatically transformed into a semantic point cloud within 5 min. We demonstrate the spatial accuracy of our method and the semantic segmentation performance (of at least 80% total accuracy), and publish a large dataset of ego‐motion videos from the northern Gulf of Aqaba, along with a dataset of video frames annotated for dense semantic segmentation of benthic classes. Our approach significantly scales up coral reef monitoring by taking a leap towards fully automatic analysis of video transects. The method advances coral reef transects by reducing the labor, equipment, logistics, and computing cost. This can help to inform conservation policies more efficiently. The underlying computational method of learning‐based Structure‐from‐Motion has broad implications for fast low‐cost mapping of underwater environments other than coral reefs.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3