Navigating through space and time: A methodological approach to quantify spatiotemporal connectivity using stream flow data as a case study

Author:

Cunillera‐Montcusí David1234ORCID,Fernández‐Calero José María12ORCID,Pölsterl Sebastian5,Argelich Roger1,Fortuño Pau12,Cid Núria16ORCID,Bonada Núria12ORCID,Cañedo‐Argüelles Miguel178ORCID

Affiliation:

1. FEHM‐Lab (Freshwater Ecology, Hydrology and Management), Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia Universitat de Barcelona (UB) Diagonal 643 08028 Barcelona Spain

2. Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB) Diagonal 643 08028 Barcelona Spain

3. Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional del Este (CURE) Universidad de la República Tacuarembó s/n Maldonado Uruguay

4. GRECO, Institute of Aquatic Ecology, University of Girona Girona Spain

5. The Lab for Artificial Intelligence in Medical Imaging (AI‐Med), Department of Child and Adolescent Psychiatry Ludwig‐Maximilians‐Universität Nussbaumstraße 5 80336 Munich Germany

6. IRTA Marine and Continental Waters Programme Ctra de Poble Nou Km 5.5 E43540 La Ràpita Catalonia Spain

7. Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB) Diagonal 643 08028 Barcelona Catalonia Spain

8. Institute of Environmental Assessment and Water Research (IDAEA‐CSIC) Carrer de Jordi Girona, 18‐26 08034 Barcelona Spain

Abstract

Abstract The growing interest in combining spatial and temporal patterns in nature has been fostered by the current availability of high‐frequency measurements. However, we still lack a methodological framework to process and interpret spatiotemporal datasets into meaningful values, adaptable to different time windows and/or responding to different spatial structures. Here, we developed and tested a framework to evaluate spatiotemporal connectivity using two new measures: the spatiotemporal connectivity (STcon) and the spatiotemporal connectivity matrix (STconmat). To obtain these measures, we consider a set of spatially connected sites within a temporally dynamic network. These measures are calculated from a spatiotemporal matrix where spatial and temporal connections across sites are captured. These connections respond to a determined network structure, assign different values to these connections and generate different scenarios from which we obtain the spatiotemporal connectivity. We developed these measures by using a dataset of stream flow state spanning a 513‐day period obtained from data loggers installed in seven temporary streams. These measures allowed us to characterise connectivity among stream reaches and relate spatiotemporal patterns with macroinvertebrate community structure and composition. Spatiotemporal connectivity differed within and among streams, with STcon and STconmat capturing different hydrological patterns. Macroinvertebrate richness and diversity were higher in more spatiotemporally connected sites. Community dissimilarity was related to STconmat showing that more spatiotemporally connected sites had similar communities for active and passive dispersers. Interestingly, both groups were related to spatiotemporal connectivity patterns for some of the analysed scenarios, highlighting the relevance of spatiotemporal connectivity in dynamic systems. As we exemplified, the proposed framework can help to disentangle and quantify spatiotemporal dynamics or be applied in the conservation of dynamic systems such as temporary streams. However, the current framework is not limited to the temporal and spatial features of temporary streams. It can be extended to other ecosystems by including different time windows and/or consider different network structures to assess spatiotemporal patterns. Such spatiotemporal measures are especially relevant in a context of global change, with the spatiotemporal dynamics of ecosystems being heavily disrupted by human activities.

Funder

Consejo Superior de Investigaciones Científicas

Publisher

Wiley

Subject

Ecological Modeling,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3