Spatial confounding in joint species distribution models

Author:

Hui Francis K. C.1ORCID,Vu Quan1,Hooten Mevin B.2

Affiliation:

1. Research School of Finance, Actuarial Studies & Statistics The Australian National University Canberra Australian Capital Territory Australia

2. Department of Statistics and Data Sciences The University of Texas at Austin Austin Texas USA

Abstract

Abstract Joint species distribution models (JSDMs) are a popular method for analysing multivariate abundance data, with important applications such as uncovering how species communities are driven by environmental processes, model‐based ordination to visualise community composition patterns across sites and variance partitioning to quantify the relative contributions of different processes in shaping a species community. One issue that has received relatively little attention in the study of joint species distributions is that of spatial confounding: when one or more of the environmental predictors exhibit spatial correlation, and spatially structured random effects such as spatial factors are also included in the model, then these two components may be collinear with each other. Through a combination of simulations and case studies, we show that if not managed properly, spatial confounding can result in misleading inference on covariate effects in a spatially structured JSDM, along with difficulties in interpreting ordination results and incorrect attribution of variation to environmental processes in a species community. We present one approach to treat spatial confounding called restricted spatial factor analysis, which is designed to ensure that the covariate effects retain their full explanatory power, and ordinations constructed using the spatial factors explain species covariation beyond that accounted for by the measured predictors. We encourage ecologists to consider the inferences they seek to make from spatially structured JSDMs and to ensure that the covariate effects and ordinations they estimate and interpret are aligned with their scientific questions of interest.

Funder

National Science Foundation

Australian Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3