Why shouldn't I collect more data? Reconciling disagreements between intuition and value of information analyses

Author:

Holden Matthew H.12ORCID,Akinlotan Morenikeji D.34,Binley Allison D.5ORCID,Cho Frankie H. T.267ORCID,Helmstedt Kate J.34ORCID,Chadès Iadine8ORCID

Affiliation:

1. School of Mathematics and Physics University of Queensland St Lucia Queensland Australia

2. Centre for Biodiversity and Conservation Science University of Queensland St Lucia Queensland Australia

3. Securing Antarctica's Environmental Future, School of Mathematical Sciences Queensland University of Technology Brisbane Queensland Australia

4. Centre for Data Science, School of Mathematical Sciences Queensland University of Technology Brisbane Queensland Australia

5. Department of Biology Carleton University Ottawa Ontario Canada

6. School of the Environment University of Queensland St Lucia Queensland Australia

7. Land, Environment, Economics and Policy Institute (LEEP) University of Exeter Business School Exeter UK

8. Commonwealth Scientific and Industrial Research Organisation Dutton Park Queensland Australia

Abstract

Abstract Value of information (VoI) analysis is a method for quantifying how additional information may improve management decisions, with applications ranging from conservation to fisheries. However, VoI studies frequently suggest that collecting more data will not substantially improve management outcomes. This often contradicts the intuition of ecologists and managers who usually believe new information is critical for management. This inconsistency is exacerbated by the perception that VoI is a black‐box method. A lack of understanding as to why VoI is usually lower than ecologists expect is hampering on‐ground uptake. There is an urgent need to identify the factors that drive VoI methodology to produce low values. Here, we use a rigorous approach to provide insights into why VoI values are often low. We first derive analytic solutions and upper bounds for a VoI problem with two uncertain states, two actions, and four management outcomes. We show how VoI changes with respect to the benefit (i.e. utility) of implementing actions in each state, and the probability the system is in each state. We apply our formulation to a published frog population management case study and extend the results numerically to 10 million randomly generated larger‐sized problems. Zero VoI occurred half of the time in our two‐action two‐state simulations, corresponding to when one action is best, or equal best, across all states. Even when VoI values were positive, they were typically low. However, on average, VoI tended to increase with the number of states and actions. Our analytic expression for VoI, in the case where VoI is positive, demonstrates that VoI is characterized by the state probabilities and, the utility gaps, that is the difference in utility of deploying each action in each state. Our derived bounds reveal that, in all two‐action two‐state systems, VoI cannot be larger than half the largest utility gap. Our simple, yet powerful, analysis provides precious insight into the important factors that drive VoI analysis. Our work provides an essential stepping stone towards increasing the interpretability of VoI analysis in more complex settings, ultimately empowering managers to use VoI to help inform their decisions.

Funder

Australian Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3