Avoid non‐probability sampling to select population monitoring sites: Comment on McClure and Rolek (2023)

Author:

Perret Jan1ORCID,Laroche Fabien2ORCID,Papuga Guillaume3ORCID,Besnard Aurélien1ORCID

Affiliation:

1. CEFE, Université de Montpellier, CNRS, EPHE‐PSL University, IRD Montpellier France

2. UMR 1201 Dynafor, Université de Toulouse, INRAE, INPT, EI PURPAN Castanet‐Tolosan France

3. AMAP, Université de Montpellier, CIRAD, IRD, CNRS, INRAE Montpellier France

Abstract

Abstract Population monitoring programmes typically rely on sampling because it is impossible to survey all the sites within the study area. In such a situation, the general recommendation to obtain unbiased estimates of population trends is to select monitoring sites using probability sampling. However, site selection not based on probability sampling, such as selecting sites with the largest abundance of individuals at the beginning of the monitoring programme, is common in practice. Nevertheless, these methods carry the risk of obtaining biased trend estimates. Using simulations, McClure & Rolek (2023) investigated whether three non‐probability sampling site selection methods can yield unbiased trend estimates under some specific conditions. For two of these methods, that is selecting high quality sites and selecting sites known to be occupied, the authors conclude that there is a major risk of obtaining biased trend estimates. For the third method, that is selecting sites with the largest initial abundance, they found conditions in which unbiased estimates can be obtained. They conclude that the general recommendation to use probability sampling should be revised. Here, we show that the authors' results, although perfectly correct, do not invalidate this recommendation. First, we point out that the authors made strong assumptions about the populations' functioning in their simulations, especially that inter‐annual variance in abundance is similar for all sites, which is unlikely in most real populations. We show through simple simulations that even slightly relaxing this assumption invalidates the authors' results. We also point out that for most of the hypotheses made by the authors, it is generally not known at the beginning of a study whether they will be respected. Furthermore, the authors did not provide evidence that selecting sites based on high initial abundance leads to more precise trend estimates than probability sampling methods. Therefore, neither the benefits nor the risks of this method are known. We conclude that until evidence is provided that abundance‐based site selection improves estimate precision and the situations in which it provides unbiased estimates are clearly identified, using probability sampling should remain the rule.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recognize nuance when interpreting monitoring results;Methods in Ecology and Evolution;2024-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3