Affiliation:
1. Department of Computer Science University of Moncton Moncton New Brunswick Canada
2. Department of Biology, Canada Research Chair in Polar and Boreal Ecology and Centre d'Études Nordiques University of Moncton Moncton New Brunswick Canada
Abstract
Abstract
Large‐scale acoustic projects generate vast amounts of data that can now be efficiently processed using deep learning tools. However, these tools often face limitations due to sound labeling and imbalanced sampling. Data augmentation can help overcome such challenges, particularly through the generation of synthetic and lifelike sounds. Synthetic samples can be valuable not only for deep learning but also for species with limited available data. Despite advancements in computer power, sound generation remains a time‐consuming process, even requiring a substantial number of samples.
We present ECOGEN, a novel deep learning approach designed to generate realistic bird songs for biologists and ecologists. The primary objective of ECOGEN is to enhance the number of samples in under‐represented bird song classes, thereby improving the performance and robustness of classifiers in ecological research.The ECOGEN framework employs spectrograms as a representation of bird songs and leverages proven image generation techniques to create new spectrograms, subsequently converted back to digital audio signals. As a class‐agnostic tool, ECOGEN is applicable to a wide range of biophonic sounds, including mammal and insect calls.
We show that adding samples generated by ECOGEN to a bird song classifier improved the classification accuracy by 12% on average and improved results compared with classic data augmentation techniques 80% of the time.
Our approach is both fast and efficient, enabling the generation of synthetic bird songs on standard computing resources. By facilitating the creation of synthetic bird songs, ECOGEN can contribute to the conservation of endangered bird species, while providing valuable insights into their vocalizations, behaviours and habitat preferences. Future development of ECOGEN can be easily implemented and could focus on incorporating additional configurable parameters during the generation phase for increased control over the output, catering to the specific needs of biologists.
Funder
Canada Foundation for Innovation
Canada Research Chairs
Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada
Subject
Ecological Modeling,Ecology, Evolution, Behavior and Systematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献