Effects of outliers on remote sensing‐assisted forest biomass estimation: A case study from the United States national forest inventory

Author:

Knott Jonathan A.1ORCID,Liknes Greg C.1,Giebink Courtney L.12ORCID,Oh Sungchan3ORCID,Domke Grant M.1ORCID,McRoberts Ronald E.4,Quirino Valquiria F.45ORCID,Walters Brian F.1ORCID

Affiliation:

1. USDA Forest Service St Paul Minnesota USA

2. Oak Ridge Associated Universities Oak Ridge Tennessee USA

3. Institute for Plant Sciences Purdue University West Lafayette Indiana USA

4. University of Minnesota St Paul Minnesota USA

5. North Dakota State University Fargo North Dakota USA

Abstract

Abstract Large‐scale ecological sampling networks, such as national forest inventories (NFIs), collect in situ data to support biodiversity monitoring, forest management and planning, and greenhouse gas reporting. Data harmonization aims to link auxiliary remotely sensed data to field‐collected data to expand beyond field sampling plots, but outliers that arise in data harmonization—questionable observations because their values differ substantially from the rest—are rarely addressed. In this paper, we review the sources of commonly occurring outliers, including random chance (statistical outliers), definitions and protocols set by sampling networks, and temporal and spatial mismatch between field‐collected and remotely sensed data. We illustrate different types of outliers and the effects they have on estimates of above‐ground biomass population parameters using a case study of 292 NFI plots paired with airborne laser scanning (ALS) and Sentinel‐2 data from Sawyer County, Wisconsin, United States. Depending on the criteria used to identify outliers (sampling year, plot location error, nonresponse, presence of zeros and model residuals), as many as 53 of the 292 Forest Inventory and Analysis plot observations (18%) were identified as potential outliers using a single criterion and 111 plot observations (38%) if all criteria were used. Inclusion or removal of potential outliers led to substantial differences in estimates of mean and standard error of the estimate of biomass per unit area. The simple expansion estimator, which does not rely on ALS or other auxiliary data, was more sensitive to outliers than model‐assisted approaches that incorporated ALS and Sentinel‐2 data. Including Sentinel‐2 predictors showed minimal increases to the precision of our estimates relative to models with ALS predictors alone. Outliers arise from many causes and can be pervasive in data harmonization workflows. Our review and case study serve as a note of caution to researchers and practitioners that the inclusion or removal of potential outliers can have unintended consequences on population parameter estimates. When used to inform large‐scale biomass mapping, carbon markets, greenhouse gas reporting and environmental policy, it is necessary to ensure the proper use of NFI and remotely sensed data in geospatial data harmonization.

Funder

U.S. Forest Service

Publisher

Wiley

Subject

Ecological Modeling,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3