Graph embedding and transfer learning can help predict potential species interaction networks despite data limitations

Author:

Strydom Tanya12ORCID,Bouskila Salomé1,Banville Francis123,Barros Ceres4ORCID,Caron Dominique25ORCID,Farrell Maxwell J.6ORCID,Fortin Marie‐Josée6,Mercier Benjamin23,Pollock Laura J.25,Runghen Rogini7ORCID,Dalla Riva Giulio V.8,Poisot Timothée12ORCID

Affiliation:

1. Département de Sciences Biologiques Université de Montréal Montréal Quebec Canada

2. Quebec Centre for Biodiversity Science Montréal Quebec Canada

3. Département de Biologie Université de Sherbrooke Sherbrooke Quebec Canada

4. Department of Forest Resources Management University of British Columbia Vancouver British Columbia Canada

5. Department of Biology McGill University Montréal Quebec Canada

6. Department of Ecology & Evolutionary Biology University of Toronto Toronto Ontario Canada

7. Centre for Integrative Ecology, School of Biological Sciences University of Canterbury Canterbury New Zealand

8. School of Mathematics and Statistics University of Canterbury Canterbury New Zealand

Abstract

Abstract Metawebs (networks of potential interactions within a species pool) are a powerful abstraction to understand how large‐scale species interaction networks are structured. Because metawebs are typically expressed at large spatial and taxonomic scales, assembling them is a tedious and costly process; predictive methods can help circumvent the limitations in data deficiencies, by providing a first approximation of metawebs. One way to improve our ability to predict metawebs is to maximize available information by using graph embeddings, as opposed to an exhaustive list of species interactions. Graph embedding is an emerging field in machine learning that holds great potential for ecological problems. Here, we outline how the challenges associated with inferring metawebs line‐up with the advantages of graph embeddings; followed by a discussion as to how the choice of the species pool has consequences on the reconstructed network, specifically as to the role of human‐made (or arbitrarily assigned) boundaries and how these may influence ecological hypotheses.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Courtois Foundation

fRI Research

Institut de Valorisation des Données

Publisher

Wiley

Subject

Ecological Modeling,Ecology, Evolution, Behavior and Systematics

Reference116 articles.

1. Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE)

2. Arsov N. &Mirceva G.(2019).Network embedding: An overview.http://arxiv.org/abs/1911.11726

3. Athreya A. Fishkind D. E. Levin K. Lyzinski V. Park Y. Qin Y. Sussman D. L. Tang M. Vogelstein J. T. &Priebe C. E.(2017).Statistical inference on random dot product graphs: A survey.arXiv.http://arxiv.org/abs/1709.05454

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3