Connectivity conservation planning through deep reinforcement learning

Author:

Equihua Julián1ORCID,Beckmann Michael1,Seppelt Ralf123ORCID

Affiliation:

1. Department of Computational Landscape Ecology, Helmholtz Centre for Environmental Research (UFZ) Leipzig Germany

2. Institute of Geoscience and Geography Martin‐Luther‐University Halle‐Wittenberg Halle (Saale) Germany

3. German Centre for Integrative Biodiversity Research (iDiv) Leipzig Germany

Abstract

Abstract The United Nations has declared 2021–2030 the decade on ecosystem restoration with the aim of preventing, stopping and reversing the degradation of the ecosystems of the world, often caused by the fragmentation of natural landscapes. Human activities separate and surround habitats, making them too small to sustain viable animal populations or too far apart to enable foraging and gene flow. Despite the need for strategies to solve fragmentation, it remains unclear how to efficiently reconnect nature. In this paper, we illustrate the potential of deep reinforcement learning (DRL) to tackle the spatial optimisation aspect of connectivity conservation planning. The propensity of spatial optimisation problems to explode in complexity depending on the number of input variables and their states is and will continue to be one of its most serious obstacles. DRL is an emerging class of methods focused on training deep neural networks to solve decision‐making tasks and has been used to learn good heuristics for complex optimisation problems. While the potential of DRL to optimise conservation decisions seems huge, only few examples of its application exist. We applied DRL to two real‐world raster datasets in a connectivity planning setting, targeting graph‐based connectivity indices for optimisation. We show that DRL converges to the known optimums in a small example where the objective is the overall improvement of the Integral Index of Connectivity and the only constraint is the budget. We also show that DRL approximates high‐quality solutions on a large example with additional cost and spatial configuration constraints where the more complex Probability of Connectivity Index is targeted. To the best of our knowledge, there is no software that can target this index for optimisation on raster data of this size. DRL can be used to approximate good solutions in complex spatial optimisation problems even when the conservation feature is non‐linear like graph‐based indices. Furthermore, our methodology decouples the optimisation process and the index calculation, so it can potentially target any other conservation feature implemented in current or future software.

Funder

Deutscher Akademischer Austauschdienst

Publisher

Wiley

Reference63 articles.

1. Operations research applicability in spatial conservation planning

2. Deep Reinforcement Learning: A Brief Survey

3. A markovian decision process;Bellman R.;Journal of Mathematics and Mechanics,1957

4. Bello I. Pham H. Le Q. V. Norouzi M. &Bengio S.(2017).Neural combinatorial optimization with reinforcement learning.http://arxiv.org/abs/1611.09940

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3