Underwater macrophotogrammetry to monitor in situ benthic communities at submillimetre scale

Author:

Gouezo Marine12ORCID,Doropoulos Christopher2ORCID,Slawinski Dirk2ORCID,Cummings Ben1,Harrison Peter1ORCID

Affiliation:

1. Faculty of Science and Engineering Southern Cross University East Lismore New South Wales Australia

2. CSIRO Environment St Lucia Queensland Australia

Abstract

Abstract Larval settlement and recruitment of sessile organisms are key ecological processes for population recovery and maintenance that occur at scales invisible to the human eye. Accordingly, proxies of recruitment have commonly been quantified using artificial substrata such as settlement tiles made of diverse materials and shapes, which are typically transported to the laboratory for examination. However, it is unknown how much bias is introduced with this sampling strategy and how recruitment quantified on tiles relates to recruitment on nearby natural substrata. Here, we applied techniques that combine macrophotography with photogrammetry (macrophotogrammetry) underwater to monitor benthic communities at submillimetre scale. This application allows the investigation of recruitment and community succession of the earliest life‐history stages in situ and on natural substrata. We tested the use of four different imaging systems, varying in costs from US$ 1400 to US$ 5440. While the most expensive SONY αRiv system provided the best visual output and ground resolution (up to 5 μm/pixel with a + 4 close‐up lens); regardless of systems, 3D models always had a ground resolution ≤23 μm/pixel and errors in planar measurements of submillimetre features were similar among systems. This level of resolution compares well with stereomicroscopy in the range of 5:1 to 10:1 magnification, while providing detailed 3D digital records through time. Using a coral reef example, we apply this approach to demonstrate how it can be used to monitor small reef areas (~300–600 cm2) through time, including the quantification of biophysical metrics such as cover of small facilitative and competitive organisms and microhabitat complexity. We further show that organisms as small 0.5 mm in size, such as 2‐month‐old coral settlers, can be located accurately within the 3D models and measured with a good level of confidence. This method can be readily applied to other benthic environments to elucidate drivers of early recruitment and recovery of benthic organisms following disturbance impacts at very fine scales, directly on natural substrata, to avoid biases inherent with laboratory‐based analyses of artificial surfaces.

Funder

Australian Government

Great Barrier Reef Foundation

Publisher

Wiley

Subject

Ecological Modeling,Ecology, Evolution, Behavior and Systematics

Reference57 articles.

1. Spatio-temporal heterogeneity in coral recruitment around Moorea, French Polynesia: Implications for population maintenance

2. Affinity Serif LTD. (2021).Affinity photo(Version 1.10.4).https://affinity.serif.com/en‐us/photo/

3. Agisoft LLC. (2021).Agisoft metashape professional edition(1.7.3 & 1.8.1).https://www.agisoft.com/downloads/installer/

4. The Gray Zone: Relationships between habitat loss and marine diversity and their applications in conservation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3