Uncorrected soil water isotopes through cryogenic vacuum distillation may lead to a false estimation on plant water sources

Author:

Yang Bin1ORCID,Dossa Gbadamassi G. O.1ORCID,Hu Yue‐Hua1ORCID,Liu Lu‐Lu12ORCID,Meng Xian‐Jing3ORCID,Du Yi‐Yuan12ORCID,Li Jia‐Yuan12ORCID,Zhu Xi‐Ai1ORCID,Zhang Yong‐Jiang4ORCID,Singh Ashutosh K.1ORCID,Yuan Xia1ORCID,Wu Jun‐En5ORCID,Zakari Sissou6ORCID,Liu Wen‐Jie1ORCID,Song Liang1ORCID

Affiliation:

1. CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden Chinese Academy of Sciences Menglun Yunnan China

2. University of Chinese Academy of Sciences Beijing China

3. Thermo Fisher Scientific Shanghai China

4. School of Biology and Ecology University of Maine Orono Maine USA

5. Faculty of Geography Yunnan Normal University Yunnan China

6. Laboratory of Hydraulics and Environmental Modeling, Faculté d'Agronomie Université de Parakou Parakou Benin

Abstract

Abstract Successful use of stable isotopes (δ2H and δ18O) in ecohydrological studies relies on the accurate extraction of unfractionated water from different types of soil samples. Cryogenic vacuum distillation (CVD) is a common laboratory‐based technique used for soil water extraction; however, the reliability of this technique in reflecting soil water δ2H and δ18O is still of concern. This study examines the reliability of a newly developed automatic cryogenic vacuum distillation (ACVD) system. We further assessed the impacts of extraction parameters (i.e. extraction time, temperature and vacuum) and soil properties on the recovery of soil water δ2H and δ18O for the ACVD and traditional cryogenic vacuum distillation (TCVD) systems. Finally, we investigated the potential influence of CVD (ACVD and TCVD) technique on the prediction of plant water uptake through a sensitivity analysis. Both ACVD and TCVD similarly extracted water from the rewetted soils, but none of the CVD systems successfully recovered the isotopic signatures of doped water from soil materials. Mean δ2H offsets of extracted soil water were −2.6 ± 1.3‰ and −2.4 ± 1.7‰ for ACVD and TCVD, respectively, while mean δ18O offsets were −0.16 ± 0.14‰ and −0.39 ± 0.37‰. The isotopic offsets of CVD systems were positively correlated with soil clay content, and negatively correlated with soil water content. Using corrected soil data (with CVD offsets) could improve the prediction of plant water uptake based on its high correlation with the environmental factors. This study identifies the isotopic offsets of CVD systems (i.e. ACVD and TCVD) and provides possible solutions for better predicting plant water sources. Even though, the wide use of CVD techniques probably induce noticeable uncertainties in the prediction of plants water uptake depths. The dataset of soil water extraction in this study will have implications for the technological development of CVD techniques.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Ecological Modeling,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3