BITS: A Bayesian Isotope Turnover and Sampling model for strontium isotopes in proboscideans and its potential utility in movement ecology

Author:

Yang Deming12ORCID,Bowen Gabriel J.1ORCID,Uno Kevin T.13ORCID,Podkovyroff Katya14,Carpenter Nancy A.5,Fernandez Diego P.1ORCID,Cerling Thure E.14ORCID

Affiliation:

1. Department of Geology and Geophysics University of Utah Salt Lake City Utah USA

2. Division of Anthropology, American Museum of Natural History New York City New York USA

3. Division of Biology and Paleo Environment Lamont‐Doherty Earth Observatory of Columbia University Palisades New York USA

4. School of Biological Sciences University of Utah Salt Lake City Utah USA

5. Utah's Hogle Zoo Salt Lake City Utah USA

Abstract

Abstract Strontium isotope ratios (87Sr/86Sr) of incrementally grown tissues have been widely used to study movement ecology and migration of animals. However, the time scale of 87Sr/86Sr incorporation from the environment into tissue and how it may influence data interpretation are still poorly understood. Using the relocation of a zoo elephant (Loxodonta africana) named Misha, we characterise and model the 87Sr/86Sr turnover process using high‐resolution measurements of its tusk dentine. We seek to develop a framework that can improve quantitative interpretation of 87Sr/86Sr data in tissues. The 87Sr/86Sr transition associated with the relocation is measured using laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS) on a prepared tusk slab. We develop a turnover model (BITS), with a rapidly exchanging central pool and a slowly exchanging peripheral pool, in a Bayesian statistical framework. The measured dentine data are first used to calibrate model parameters. The parameters are then used to estimate possible 87Sr/86Sr input time series from two datasets via model inversion: a fidelity test using Misha's dentine data and a case study using published dentine measurements from an Alaskan Woolly Mammoth (Mammuthus primigenius). The LA‐ICP‐MS data are consistent with a two‐compartment turnover process with equivalent half‐lives of 41 days for the central pool and 170 days for the peripheral pool. The model inversion shows good fidelity when estimating the intake 87Sr/86Sr time series associated with Misha's relocation. In the case study, the model suggests an abrupt pattern of change in, and a much wider range of, intake 87Sr/86Sr values than expressed in the woolly mammoth dentine data themselves. Our framework bridges the gap between environmental 87Sr/86Sr variation and data measured in tusk dentine or other incrementally grown tissues. It could be coupled with movement models and additional isotope tracers to study seasonal residency or the spatial and temporal patterns of movement/migration. The generic turnover processes can be adapted to other isotope systems, additional incremental tissues, or other organisms, thus expanding our modelling toolkit to investigate niche partitioning, life history traits and behavioural patterns in conservation biology, archaeology and paleoecology.

Funder

Division of Behavioral and Cognitive Sciences

Division of Biological Infrastructure

Division of Earth Sciences

G. Unger Vetlesen Foundation

University of Utah

Publisher

Wiley

Subject

Ecological Modeling,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3