Functional diversity metrics can perform well with highly incomplete data sets

Author:

Stewart Kerry1ORCID,Carmona Carlos P.2ORCID,Clements Chris3ORCID,Venditti Chris1ORCID,Tobias Joseph A.4ORCID,González‐Suárez Manuela1ORCID

Affiliation:

1. Ecology and Evolutionary Biology, School of Biological Sciences University of Reading Reading UK

2. Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia

3. School of Biological Sciences University of Bristol Bristol UK

4. Department of Life Sciences Imperial College London Ascot UK

Abstract

Abstract Characterising changes in functional diversity at large spatial scales provides insight into the impact of human activity on ecosystem structure and function. However, the approach is often based on trait data sets that are incomplete and unrepresentative, with uncertain impacts on functional diversity estimates. To address this knowledge gap, we simulated random and biased removal of data from three empirical trait data sets: an avian data set (9579 species), a plant data set (2185 species) and a crocodilian data set (25 species). For these data sets, we assessed whether functional diversity metrics were robust to data incompleteness with and without using imputation to fill data gaps. We compared two metrics each calculated with two methods: functional richness (calculated with convex hulls and trait probabilities densities) and functional divergence (calculated with distance‐based Rao and trait probability densities). Without imputation, estimates of functional diversity (richness and divergence) for birds and plants were robust when 20%–70% of species had missing data for four out of 11 and two out of six continuous traits, respectively, depending on the severity of bias and method used. However, when missing traits were imputed, functional diversity metrics consistently remained representative of the true value when 70% of bird species were missing data for four out of 11 traits and when 50% of plant species were missing data for two out of six traits. Trait probability densities and distance‐based Rao were particularly robust to missingness and bias when combined with imputation. Convex hull‐based estimations of functional richness were less reliable. When applied to a smaller data set (crocodilians, 25 species), all functional diversity metrics were much more sensitive to missing data. Expanding global morphometric data sets to represent more taxa and traits, and to quantify intraspecific variation, remains a priority. In the meantime, our results show that widely used methods can successfully quantify large‐scale functional diversity even when data are missing for half of species, provided that missing traits are estimated using imputation. We recommend the use of trait probability densities or distance‐based Rao when working with large incomplete data sets and filling data gaps with imputation.

Funder

Leverhulme Trust

Publisher

Wiley

Subject

Ecological Modeling,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3