Affiliation:
1. Cawthron Institute Nelson New Zealand
2. Institute of Marine Science University of Auckland Auckland New Zealand
3. Sequench Ltd Nelson New Zealand
Abstract
Abstract
The combination of an efficient sampling method and high‐throughput analysis of environmental DNA (eDNA) can be a powerful approach for characterising biodiversity across aquatic ecosystems. Plankton net tows are one of the oldest, simplest, and least expensive methods for seston and eDNA collection, but require laborious filtration steps which often lead to clogging and/or the introduction of contaminants.
In this study, we used a cruising speed net (CSN) device enabling the collection of seston‐derived eDNA at 5 knots speed combined with a novel modified cod‐end with 20 μm nylon mesh inserts enabling eDNA capture while towing. We compared the performance of the CSN sampling protocol with the original conventional filtration of water sample versus the modified cod‐end.
Samples were collected in parallel horizontal tows along New Zealand's North‐Eastern coastline. Concentrated water was filtered on conventional 5 μm cellulose acetate membranes, while the 20 μm nylon mesh inserts were immediately isolated post‐towing. Metabarcoding of bacterial 16S rRNA, eukaryotic nuclear 18S rRNA and mitochondrial COI genes, revealed no significant difference in alpha diversity between filtration techniques. In terms of community composition, a clear and significant shift could be observed between sampling sites and environments. Significant differences could be detected between filtration methods for 16S and COI markers, likely driven by fine‐scale differences at more turbid sheltered sites. Nonetheless, each technique could detect shifts in communities between sites and environments with similar sensitivity.
Our results demonstrate the promising potential of the modified cod‐end to enable practical and cost‐effective isolation of eDNA‐derived biodiversity data from any vessel types (at ≤5 knots) across a large range of aquatic ecosystems and biogeographic scales.
Subject
Ecological Modeling,Ecology, Evolution, Behavior and Systematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献