Fossil image identification using deep learning ensembles of data augmented multiviews

Author:

Hou Chengbin12ORCID,Lin Xinyu23ORCID,Huang Hanhui4ORCID,Xu Sheng3ORCID,Fan Junxuan4ORCID,Shi Yukun4ORCID,Lv Hairong12ORCID

Affiliation:

1. Ministry of Education Key Laboratory of Bioinformatics Bioinformatics Division Beijing National Research Center for Information Science and Technology Department of Automation Tsinghua University Beijing China

2. Fuzhou Institute of Data Technology Fuzhou China

3. College of Physics and Information Engineering Fuzhou University Fuzhou China

4. School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling Nanjing University Nanjing China

Abstract

Abstract Identification of fossil species is crucial to evolutionary studies. Recent advances from deep learning have shown promising prospects in fossil image identification. However, the quantity and quality of labelled fossil images are often limited due to fossil preservation, conditioned sampling and expensive and inconsistent label annotation by domain experts, which pose great challenges to training deep learning‐based image classification models. To address these challenges, we follow the idea of the wisdom of crowds and propose a multiview ensemble framework, which collects Original (O), Grey (G) and Skeleton (S) views of each fossil image reflecting its different characteristics to train multiple base models, and then makes the final decision via soft voting. Experiments on the largest fusulinid dataset with 2400 images show that the proposed OGS consistently outperforms baselines (using a single model for each view), and obtains superior or comparable performance compared to OOO (using three base models for three the same Original views). Besides, as the training data decreases, the proposed framework achieves more gains. While considering the identification consistency estimation with respect to human experts, OGS receives the highest agreement with the original labels of dataset and with the re‐identifications of two human experts. The validation performance provides a quantitative estimation of consistency across different experts and genera. We conclude that the proposed framework can present state‐of‐the‐art performance in the fusulinid fossil identification case study. This framework is designed for general fossil identification and it is expected to see applications to other fossil datasets in future work. Notably, the result, which shows more performance gains as train set size decreases or over a smaller imbalance fossil dataset, suggests the potential application to identify rare fossil images. The proposed framework also demonstrates its potential for assessing and resolving inconsistencies in fossil identification.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

Wiley

Subject

Ecological Modeling,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3