Long‐term collar deployment leads to bias in soil respiration measurements

Author:

Ma Xiaoliang1ORCID,Jiang Shengjing1ORCID,Zhang Zhiqi2,Wang Hao3ORCID,Song Chao3ORCID,He Jin‐Sheng12ORCID

Affiliation:

1. State Key Laboratory of Herbage Improvement and Grassland Agro‐Ecosystems, College of Pastoral Agriculture Science and Technology Lanzhou University Lanzhou China

2. Institute of Ecology, College of Urban and Environmental Sciences Peking University Beijing China

3. State Key Laboratory of Herbage Improvement and Grassland Agro‐Ecosystems, College of Ecology Lanzhou University Lanzhou China

Abstract

Abstract Accurate measurements of soil respiration (Rs) are critical for understanding how soil carbon will respond to environmental changes. However, a commonly used method for Rs measurements, the collar deployment method, may introduce artefacts that cause bias in Rs measurements. Our objective was to quantify the effect of long‐term collar deployment on Rs and to unravel potential causes due to changes in the soil environment. A field experiment (2017–2019) including short‐term (2–3 days before the measurement) and long‐term collar deployment (lasting three consecutive growing seasons) was conducted to assess the methodological effect on Rs in an alpine grassland of the northeastern Tibetan Plateau. Soil incubation was used to further explore the mechanisms underlying the effects of collar deployment. The effect of long‐term collar deployment on Rs varied over time. In the first one and a half growing seasons, no significant difference in Rs was noted under short‐ and long‐term collar deployment. This may be attributed to the negative effects of lower root biomass inside long‐term collars and the positive effects of higher temperature and pulse input of dead roots following collar deployment. Under the long‐term collar, Rs decreased rapidly in the middle of the second growing season and remained low until the end of the experiment, resulting in an 18.2% decrease relative to short‐term collar deployment in the third growing season. Higher soil bulk density and lower root and microbial biomass inside long‐term collars may explain the decrease in Rs and temperature sensitivity (Q10). Soil incubation experiments revealed that the soil organic carbon (SOC) decomposition rate and Q10 were significantly reduced after long‐term collar deployment. Long‐term collars led to substantial underestimates of Rs after more than 2 years. Our findings suggest that such potential artefacts should be considered when interpreting Rs data based on long‐term collar deployment. Long‐term collars should be relocated every 1–2 years to avoid artefacts if feasible. Alternatively, periodic measurements using short‐term collars are recommended to quantify the magnitude of collar artefacts.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Ecological Modeling,Ecology, Evolution, Behavior and Systematics

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3