Harnessing large language models for coding, teaching and inclusion to empower research in ecology and evolution

Author:

Cooper Natalie1ORCID,Clark Adam T.2ORCID,Lecomte Nicolas3ORCID,Qiao Huijie4ORCID,Ellison Aaron M.56ORCID

Affiliation:

1. Science Group, Natural History Museum London London UK

2. Department of Biology, University of Graz Graz Austria

3. Canada Research Chair in Polar and Boreal Ecology and Centre d'Études Nordiques, Department of Biology University of Moncton Moncton New Brunswick Canada

4. Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology, Chinese Academy of Sciences Beijing China

5. Harvard University Herbaria, Harvard University Cambridge Massachusetts USA

6. Sound Solutions for Sustainable Science Boston Massachusetts USA

Abstract

Abstract Large language models (LLMs) are a type of artificial intelligence (AI) that can perform various natural language processing tasks. The adoption of LLMs has become increasingly prominent in scientific writing and analyses because of the availability of free applications such as ChatGPT. This increased use of LLMs not only raises concerns about academic integrity but also presents opportunities for the research community. Here we focus on the opportunities for using LLMs for coding in ecology and evolution. We discuss how LLMs can be used to generate, explain, comment, translate, debug, optimise and test code. We also highlight the importance of writing effective prompts and carefully evaluating the outputs of LLMs. In addition, we draft a possible road map for using such models inclusively and with integrity. LLMs can accelerate the coding process, especially for unfamiliar tasks, and free up time for higher level tasks and creative thinking while increasing efficiency and creative output. LLMs also enhance inclusion by accommodating individuals without coding skills, with limited access to education in coding, or for whom English is not their primary written or spoken language. However, code generated by LLMs is of variable quality and has issues related to mathematics, logic, non‐reproducibility and intellectual property; it can also include mistakes and approximations, especially in novel methods. We highlight the benefits of using LLMs to teach and learn coding, and advocate for guiding students in the appropriate use of AI tools for coding. Despite the ability to assign many coding tasks to LLMs, we also reaffirm the continued importance of teaching coding skills for interpreting LLM‐generated code and to develop critical thinking skills. As editors of MEE, we support—to a limited extent—the transparent, accountable and acknowledged use of LLMs and other AI tools in publications. If LLMs or comparable AI tools (excluding commonly used aids like spell‐checkers, Grammarly and Writefull) are used to produce the work described in a manuscript, there must be a clear statement to that effect in its Methods section, and the corresponding or senior author must take responsibility for any code (or text) generated by the AI platform.

Publisher

Wiley

Reference24 articles.

1. Beaulieu J. M. &O'Meara B.(2022).OUwie: Analysis of evolutionary rates in an OU framework. R package version 2.10.https://github.com/thej022214/OUwie

2. A Survey on Evaluation of Large Language Models

3. Reducing the Carbon Impact of Generative AI Inference (today and in 2035)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3