Drone audition for bioacoustic monitoring

Author:

Wang Lin1ORCID,Clayton Michael1,Rossberg Axel G.2ORCID

Affiliation:

1. School of Electronic Engineering and Computer Science Queen Mary University of London London UK

2. School of Biological and Behavioural Sciences Queen Mary University of London London UK

Abstract

Abstract Multi‐rotor drones equipped with acoustic sensors have great potential for bioacoustically monitoring vocal species in the environment for biodiversity conservation. The bottleneck of this emerging technology is the ego‐noise from the rotating motors and propellers, which can completely mask the target sound and make sound recordings unusable for further analysis. The ego‐noise not only degrades the performance of bioacoustic monitoring but also impacts the behaviour of target species if the drone is too close to the target area. In this paper, we address this challenging problem by combining hardware and software solutions that minimize the impact of drone ego‐noise on bioacoustic monitoring. To collect the target sound from the ground, we used a shotgun microphone recording system suspended underneath the drone body with a wire rope (steel fishing line) of length 2 m. The suspended rope puts a large distance between the drone and the recorder, reducing the propeller sound perceived by the microphone. The shotgun microphone enables the sound to be picked up from the ground effectively while rejecting the drone sound from above. We further developed a software solution that aims to automatically recognize the bird species from the bird call recording and we proposed a noise‐augmented training scheme to improve the robustness of bird recognition in the presence of strong drone noise. We evaluated the performance of the system in a test problem of recognizing 20 bird species with in‐flight recordings, where a loudspeaker on the ground simulates bird calls. The recordings were obtained using a drone hovering at various altitudes ranging from 5 to 30 m. By combining the hardware and software solutions, the system recognizes birds robustly at an altitude of 30 m and signal‐to‐noise ratio −25 dB. This demonstrates the feasibility of our drone audition system for bioacoustic monitoring. The proposed method overcomes a long‐standing bottleneck problem in drone audition and promises new applications of bioacoustic monitoring in research and management.

Publisher

Wiley

Subject

Ecological Modeling,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3