Convergent photophysiology and prokaryotic assemblage structure in epilithic cyanobacterial tufts and algal turf communities

Author:

Cissell Ethan C.1ORCID,McCoy Sophie J.1ORCID

Affiliation:

1. Department of Biology The University of North Carolina at Chapel Hill Chapel Hill North Carolina USA

Abstract

AbstractAs global change spurs shifts in benthic community composition on coral reefs globally, a better understanding of the defining taxonomic and functional features that differentiate proliferating benthic taxa is needed to predict functional trajectories of reef degradation better. This is especially critical for algal groups, which feature dramatically on changing reefs. Limited attention has been given to characterizing the features that differentiate tufting epilithic cyanobacterial communities from ubiquitous turf algal assemblages. Here, we integrated an in situ assessment of photosynthetic yield with metabarcoding and shotgun metagenomic sequencing to explore photophysiology and prokaryotic assemblage structure within epilithic tufting benthic cyanobacterial communities and epilithic algal turf communities. Significant differences were not detected in the average quantum yield. However, variability in yield was significantly higher in cyanobacterial tufts. Neither prokaryotic assemblage diversity nor structure significantly differed between these functional groups. The sampled cyanobacterial tufts, predominantly built by Okeania sp., were co‐dominated by members of the Proteobacteria, Firmicutes, and Bacteroidota, as were turf algal communities. Few detected ASVs were significantly differentially abundant between functional groups and consisted exclusively of taxa belonging to the phyla Proteobacteria and Firmicutes. Assessment of the distribution of recovered cyanobacterial amplicons demonstrated that alongside sample‐specific cyanobacterial diversification, the dominant cyanobacterial members were conserved across tufting cyanobacterial and turf algal communities. Overall, these data suggest a convergence in taxonomic identity and mean photosynthetic potential between tufting epilithic cyanobacterial communities and algal turf communities, with numerous implications for consumer‐resource dynamics on future reefs and trajectories of reef functional ecology.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3