Affiliation:
1. Polish Academy of Sciences The Franciszek Górski Institute of Plant Physiology Kraków Poland
2. Department of Plant Breeding, Physiology and Seed Science, Faculty of Agriculture and Economics Agricultural University Kraków Poland
Abstract
AbstractThe aim was to identify subgenome‐related specific responses in two types of triticale, that is, of the wheat‐dominated genome (WDG) and rye‐dominated genome (RDG), to water stress induced in the early phase (tillering) of plant growth. Higher activity of the primary metabolism of carbohydrates is a feature of the WDG type, while the dominance of the rye genome is associated with a higher activity of the secondary metabolism of phenolic compounds in the RDG type. The study analyzed carbohydrates and key enzymes of their synthesis, free phenolic compounds and carbohydrate‐related components of the cell wall, monolignols, and shikimic acid (ShA), which is a key link between the primary and secondary metabolism of phenolic compounds. Under water stress, dominance of the wheat genome in the WDG type was manifested by an increased accumulation of the large subunit of Rubisco and sucrose phosphate synthase and a higher content of raffinose and stachyose compared with the RDG type. In dehydrated RDG plants, higher activity of L‐phenylalanine ammonia lyase (PAL) and L‐tyrosine ammonia lyase (TAL), as well as a higher level of ShA, free and cell wall‐bound p‐hydroxybenzoic acid, free homovanillic acid, free sinapic acid, and cell wall‐bound syringic acid can be considered biochemical indicators of the dominance of the rye genome.
Subject
Cell Biology,Plant Science,Genetics,General Medicine,Physiology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献