Protective role of quercetin and kaempferol against oxidative damage and photosynthesis inhibition in wheat chloroplasts under arsenic stress

Author:

Arikan Busra1,Yildiztugay Evren1ORCID,Ozfidan‐Konakci Ceyda2

Affiliation:

1. Department of Biotechnology, Faculty of Science Selcuk University Konya Turkey

2. Department of Molecular Biology and Genetics, Faculty of Science Necmettin Erbakan University Konya Turkey

Abstract

AbstractArsenic (As) toxicity negatively impacts plant development, limits agricultural production, and, by entering the food chain, endangers human health. Studies on the use of natural and bioactive molecules in increasing plants' resistance to abiotic stressors, such as As, have gained increasing attention in the last few years. Flavonols are plant secondary metabolites with high potential in stress tolerance due to their roles in signal transmission. Therefore, the focus of this study was to examine the effects of two flavonols, quercetin (Q, 25 μM) and kaempferol (K, 25 μM), on growth parameters, photosynthesis, and chloroplastic antioxidant activity in wheat leaves under As stress (100 μM). As stress reduced the relative growth rate by 50% and relative water content by 25% in leaves. However, applying Q and/or K alleviated the As‐induced suppression of growth and water relations. Exogenous phenolic treatments reversed the effects of As toxicity in photochemistry and maintained the photochemical quantum efficiency of the Photosystem II (Fv/Fm). As exposure increased, the H2O2 content in wheat chloroplasts by 42% and high levels of H2O2 accumulation were also observed in guard cells in confocal microscopy images. Analysis of the chloroplastic antioxidant system has shown that Q and K applications increase the activity of antioxidant enzymes, including superoxide dismutase, peroxidase, and ascorbate peroxidase. Phenolic applications have induced the ascorbate–glutathione (AsA‐GSH) cycle in charge of the protection of the cellular redox balance in different ways. It has been determined that Q triggers the AsA renewal, and K maintains the GSH pool. As a result, Q and K applications provide tolerance to wheat plants under As stress by increasing the chloroplastic antioxidant system activity and protecting photosynthetic reactions from oxidative damage. This study reveals the potential use of plant phenolic compounds in agricultural systems as a biosafe strategy to enhance plant stress tolerance, hence increasing yield.

Funder

Selçuk Üniversitesi

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3