Full‐length transcriptome analysis provides insights into flavonoid biosynthesis in Ranunculus japonicus

Author:

Xu Jingyao12,Shan Tingyu12,Zhang Jingjing12,Zhong Xinxin12,Tao Yijia1,Wu Jiawen123ORCID

Affiliation:

1. Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine Hefei China

2. Key Laboratory of Xin'an Medicine, Ministry of Education Anhui University of Chinese Medicine Hefei China

3. Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement Hefei China

Abstract

AbstractRanunculus japonicus Thunb. is a traditional Chinese herb. Plants in the genus Ranunculus are generally rich in flavonoids, which have antibacterial, anti‐infective, and other pharmacological effects. However, owing to the lack of reference genomes, little is known about the flavonoid biosynthetic pathway in R. japonicus. In this study, PacBio isoform sequencing (PacBio iso‐seq) and DNA nanoball sequencing (DNB‐seq) were combined to build a full‐length transcriptome database for three different tissues of R. japonicus. A total of 395,402 full‐length transcripts were obtained, of which 308,474 were successfully annotated. A Kyoto Encyclopedia of Genes and Genomes analysis identified 29 differentially expressed genes encoding nine key enzymes for flavonoid biosynthesis. Correlation analysis indicated that flavanone 3‐hydroxylase and flavonol synthase genes might have key roles in the accumulation of flavonoid substances in the different tissues of R. japonicus. The structures of chalcone synthase and chalcone isomerase enzymes were spatially modeled. Reverse‐transcription quantitative PCR was used to verify gene expression levels of key enzymes associated with flavonoid biosynthesis. In addition, 22 MYB transcription factors involved in flavonoid biosynthesis and phenylpropanoid biosynthesis were discovered. The reliable transcriptomic data from this study provide genetic information about R. japonicus as well as insights into the molecular mechanism of flavonoid biosynthesis. The results also provide a basis for developing the medicinal value R. japonicus.

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics,General Medicine,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3