Middle and Late Holocene relative sea level changes and coastal development at Rugård, Denmark

Author:

Riis Marie Holst1,Sander Lasse2ORCID,Nielsen Lars3ORCID,Buylaert Jan‐Pieter4ORCID,Challier Amélie Juliette Marie4,Larsen Nicolaj Krog1ORCID

Affiliation:

1. Globe Institute University of Copenhagen Øster Voldgade 5‐7 1350 Copenhagen K Denmark

2. Alfred‐Wegener‐Institute Helmholtz Center for Polar and Marine Research Hafenstraße 43 25992 List/Sylt Germany

3. Geological Survey of Greenland and Denmark (GEUS) Øster Voldgade 10 1350 Copenhagen K Denmark

4. Department of Physics Technical University of Denmark DTU Risø Campus DK‐4000 Roskilde Denmark

Abstract

Denmark has been subject to complex interactions of isostatic uplift and eustatic sea level changes since the last deglaciation. Prominent coastal beach ridges as well as lagoonal and lake deposits from this period have been investigated at a number of sites in the region to constrain the relative sea level (RSL) changes. However, despite the common occurrence of former coastal lagoons and lakes in proximity to raised beach ridges, they have rarely been studied in combination. In this study, we use a multiproxy approach including geospatial data, lake sediment coring, ground penetrating radar and optically stimulated luminescence dating to investigate the Holocene coastal evolution and RSL history at Rugård in Mols Bjerge National Park, on the east coast of the Jutland Peninsula. Our results show that the coastal area at Rugård was transgressed between c. 7.6 and 7.0 cal. ka BP and that RSL was ~4.5 m higher than present between c. 6.6 and 5.9 ka ago, when the highest section of the beach ridge plain was deposited. The elevation and timing of this relative highstand are in good agreement with previous estimates of the Littorina transgression and contribute to our combined knowledge about RSL history and coastal evolution in the southern Kattegat. Subsequently, isostatic adjustment has caused uplift and erosion of the beach ridge plain, but renewed progradation and deposition of a lower beach plain have taken place since c. 1740 CE. Our results demonstrate the value of using a multiproxy approach to study RSL changes and coastal evolution.

Publisher

Wiley

Subject

Geology,Archeology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3