Association of endoplasmic reticulum associated degradation (ERAD) with the transmission of Liberibacter solanacearum by its psyllid vector

Author:

Jassar Ola12,Ghanim Murad1ORCID

Affiliation:

1. Department of Entomology Volcani Institute Rishon Lezion Israel

2. The Robert H. Smith Faculty of Agriculture, Food & Environment The Hebrew University of Jerusalem Rehovot Israel

Abstract

AbstractCandidatus Liberibacter solanacearum (CLso) is a complex of gram negative plant pathogenic and fastidious bacterial haplotypes restricted to the phloem and transmitted by several psyllid species. In Israel, the carrot psyllid Bactericera trigonica transmits CLso haplotype D in a persistent and propagative manner and causes the carrot yellows disease, inflicting significant economic losses in many countries. Understanding the transmission of CLso is fundamental to devising sustainable management strategies. Persistent transmission of vector‐borne pathogens involves the critical steps of adhesion, cell invasion and replication inside the insect gut cells before passage to the hemolymph. Using microscopy and expression analyses, we have previously confirmed a role for the endoplasmic reticulum (ER) in inducing immune responses and subsequent molecular pathways resulting in programmed cell death (apoptosis) upon CLso‐infection in the midgut. In the current study, we confirm that the ER‐associated degradation (ERAD) machinery and its associated marker genes were upregulated in CLso infected insects, including Derlin‐1, Selenoprotein‐1 and Ubiquitin Ligase RNF‐185. Silencing Derlin‐1, which acts on the ER membrane by regulating the degradation of unfolded proteins upon ER stress, revealed its role in CLso persistence and transmission. Molecular pathways initiated in the ER membrane upon bacterial infection are well documented in human, animal and insect systems, and this study confirms the role of the ER in CLso‐psyllid interactions.

Funder

Israel Science Foundation

Publisher

Wiley

Subject

Insect Science,Genetics,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3