Affiliation:
1. Department of Psychology, Faculty of Science University of Alberta Edmonton Alberta Canada
2. Faculty of Medicine University of Calgary Calgary Alberta Canada
3. Department of Psychology University of Oldenburg Oldenburg Germany
4. Department of Psychology Rutgers University Piscataway New Jersey USA
Abstract
AbstractAlthough historically confined to traditional research laboratories, electroencephalography (EEG) paradigms are now being applied to study a wide array of behaviors, from daily activities to specialized tasks in diverse fields such as sports science, neurorehabilitation, and education. This transition from traditional to real‐world mobile research can provide new tools for understanding attentional processes as they occur naturally. Early mobile EEG research has made progress, despite the large size and wired connections. Recent developments in hardware and software have expanded the possibilities of mobile EEG, enabling a broader range of applications. Despite these advancements, limitations influencing mobile EEG remain that must be overcome to achieve adequate reliability and validity. In this review, we first assess the feasibility of mobile paradigms, including electrode selection, artifact correction techniques, and methodological considerations. This review underscores the importance of ecological, construct, and predictive validity in ensuring the trustworthiness and applicability of mobile EEG findings. Second, we explore studies on attention in naturalistic settings, focusing on replicating classic P3 component studies in mobile paradigms like stationary biking in our lab, and activities such as walking, cycling, and dual‐tasking outside of the lab. We emphasize how the mobile approach complements traditional laboratory paradigms and the types of insights gained in naturalistic research settings. Third, we discuss promising applications of portable EEG in workplace safety and other areas including road safety, rehabilitation medicine, and brain–computer interfaces. In summary, this review explores the expanding possibilities of mobile EEG while recognizing the existing challenges in fully realizing its potential.