Artificial intelligence measured 3D body composition to predict pathological response in rectal cancer patients

Author:

Wei Matthew Y12ORCID,Cao Ke1,Hong Wei3,Yeung Josephine1,Lee Margaret4,Gibbs Peter34,Faragher Ian G.2,Baird Paul N.1,Yeung Justin M.12

Affiliation:

1. Department of Surgery Western Precinct, University of Melbourne Melbourne Victoria Australia

2. Department of Colorectal Surgery Western Health Melbourne Victoria Australia

3. Gibbs Lab Walter and Eliza Hall Institute Melbourne Victoria Australia

4. Department of Medical Oncology Western Health Melbourne Victoria Australia

Abstract

AbstractBackgroundThe treatment of locally advanced rectal cancer (LARC) is moving towards total neoadjuvant therapy and potential organ preservation. Of particular interest are predictors of pathological complete response (pCR) that can guide personalized treatment. There are currently no clinical biomarkers which can accurately predict neoadjuvant therapy (NAT) response but body composition (BC) measures present as an emerging contender. The primary aim of the study was to determine if artificial intelligence (AI) derived body composition variables can predict pCR in patients with LARC.MethodsLARC patients who underwent NAT followed by surgery from 2012 to 2023 were identified from the Australian Comprehensive Cancer Outcomes and Research Database registry (ACCORD). A validated in‐house pre‐trained 3D AI model was used to measure body composition via computed tomography images of the entire Lumbar‐3 vertebral level to produce a volumetric measurement of visceral fat (VF), subcutaneous fat (SCF) and skeletal muscle (SM). Multivariate analysis between patient body composition and histological outcomes was performed.ResultsOf 214 LARC patients treated with NAT, 22.4% of patients achieved pCR. SM volume (P = 0.015) and age (P = 0.03) were positively associated with pCR in both male and female patients. SCF volume was associated with decreased likelihood of pCR (P = 0.059).ConclusionThis is the first study in the literature utilizing AI‐measured 3D Body composition in LARC patients to assess their impact on pathological response. SM volume and age were positive predictors of pCR disease in both male and female patients following NAT for LARC. Future studies investigating the impact of body composition on clinical outcomes and patients on other neoadjuvant regimens such as TNT are potential avenues for further research.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3