Gene expression underlying variation in the survival skills of red drum larvae (Sciaenops ocellatus)

Author:

Smith Samantha K.1ORCID,Aglyamova Galina1,Oberg Erik W.2ORCID,Fuiman Lee A.2ORCID,Matz Mikhail V.1ORCID

Affiliation:

1. Department of Integrative Biology University of Texas at Austin Austin Texas USA

2. Marine Science Institute University of Texas at Austin Port Aransas Texas USA

Abstract

AbstractMortality rates of marine fish larvae are incredibly high and can determine year‐class strength. The major causes of larval mortality are predation and starvation, and the performance of larvae in survival skills that can mitigate this mortality (predator evasion, foraging) varies among individuals and cohorts, but the causes of the variation are not known. Transcriptomics can link gene expression variation to phenotypic variation at the whole‐system level to investigate the molecular basis of behavioural variation. We used tag‐based RNA‐sequencing to examine the molecular basis of variation in predator evasion and routine swimming (trait related to foraging efficiency) in the larval red drum, Sciaenops ocellatus. We looked for functional gene networks in which interindividual variation would explain variation in larval behavioural performance. We identified co‐expressed gene groups (“modules”) associated with predator evasion traits and found enrichment of motor, neural and energy metabolism pathways. These functional associations and pattern of correlations between modules and traits suggest that energy availability and allocation were responsible for the magnitude of startle responses, while differential neural and motor activation were associated with differences in response latency.

Funder

South Carolina Sea Grant Consortium

Publisher

Wiley

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3