Recurrent inhibition contribution to corticomuscular coherence modulation between contraction types

Author:

Glories Dorian1,Duclay Julien1ORCID

Affiliation:

1. Toulouse NeuroImaging Center Université de Toulouse Toulouse France

Abstract

Recent findings provided evidence that spinal regulatory mechanisms were involved in corticomuscular coherence (CMC) modulation between contraction types. Although their relative contributions could not be precisely identified, it was suggested that recurrent inhibition (RI) could modulate CMC by regulating the synchronization of spinal motoneuron activity. To confirm this hypothesis, concurrent modulations of RI and CMC for the soleus (SOL) were compared during submaximal isometric, shortening and lengthening plantar flexions. Submaximal contraction intensity was set at 50% of the maximal SOL EMG activity. CMC was computed in the time‐frequency domain between the Cz EEG electrode signal and the nonrectified SOL EMG signal. The RI was quantified through the paired Hoffmann (H) reflex technique by comparing the modulations of the test and conditioning H‐reflexes (H' and H1, respectively). Both beta‐band CMC and the ratio between H′ and H1 amplitudes were significantly lower in SOL during lengthening compared with isometric and shortening contractions. Furthermore, we observed a negative linear correlation between the RI and beta‐band CMC. Finally, a higher RI increase during lengthening contractions compared to either isometric or shortening ones was correlated with a larger decrease in CMC. Collectively, these novel findings provide robust evidence that the RI acts as a neural “filter” that contributes to the modulation of corticomuscular interactions between contraction types, possibly by disrupting the oscillatory muscle activation.

Publisher

Wiley

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The neuromechanical of Beta-band corticomuscular coupling within the human motor system;Frontiers in Neuroscience;2024-08-15

2. Corrigendum;Scandinavian Journal of Medicine & Science in Sports;2023-08-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3