Unsupervised fabric defect detection based on multiscale image reconstruction and structural similarity assessment

Author:

Yu Zhiqi1,Xu Yang1,Wang Yuanfei1,Wang Yuekun1,Sheng Xiaowei1

Affiliation:

1. College of Mechanical Engineering, Donghua University Shanghai China

Abstract

AbstractFabric defect detection is a crucial aspect of the textile industry. Currently, deep learning methods have demonstrated exceptional performance in fabric defect detection tasks. However, their performance is greatly affected by the number of defect samples, which is a challenge to obtain during actual production. To address this issue, this article proposes an unsupervised anomaly detection method for fabric defects using image reconstruction networks. This method only requires defect‐free samples for training. During the training phase, the model compresses defect‐free samples to obtain a low‐dimensional manifold and reconstruct them. During the inference phase, the method assesses whether a sample is defective by calculating the reconstruction error between the input and output images, and locates the defect region by computing the difference in various patches. Furthermore, since fabric contains rich texture features, with high correlation between neighbouring pixels, a structure similarity index measure combined with mean absolute error is introduced to evaluate the reconstruction error, which enhances the model's representation ability for defect‐free samples. Additionally, considering the diverse texture backgrounds in fabric, a multiscale reconstruction module is designed to optimise the reconstruction effect. Experimental results demonstrate that compared with other related approaches, the proposed method achieves high accuracy (image‐based area under the curve (AUC) up to 98.2% and pixel‐based AUC up to 97.3%) on multiple datasets and has good generalisation ability for different fabric textures.

Publisher

Wiley

Subject

Materials Science (miscellaneous),General Chemical Engineering,Chemistry (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3