Integrating different facets of diversity into food web models: how adaptation among and within functional groups shape ecosystem functioning

Author:

Wojcik Laurie Anne1ORCID,Klauschies Toni1ORCID,Velzen Ellen van1ORCID,Guill Christian1ORCID,Gaedke Ursula1ORCID

Affiliation:

1. Ecology and Ecosystem Modelling, University of Potsdam Am Neuen Palais Potsdam Germany

Abstract

Adaptation of communities to environmental fluctuations can emerge from different facets of biodiversity, which may impact ecosystem functioning differently. Previous work in the field of biodiversity–ecosystem functioning (BEF) examined how ecosystem functions can be influenced by two sources of adaptive potential: sorting – i.e. changes in community composition due to fitness differences – can occur when multiple species or groups are present (richness), and trait adaptability – i.e. trait adjustments within species or functional groups – can emerge from genetic or phenotypic diversity. However, their effect is typically studied separately, and often in the context of only one trophic level. Therefore, we used a trait‐based, multispecies predator–prey model to investigate how sorting and trait adaptability, at one or two trophic levels, separately or jointly shape ecosystem functions and properties, such as total biomass, production, biomass‐weighted mean trait, relative top–down control and synchrony. We found that the adaptive potential emerging from any facet of diversity induced changes in trophic interactions, in turn affecting biomass distributions within and across trophic levels, dynamical behaviour, and synchrony of biomass dynamics within a trophic level. Particularly, sorting and trait adaptability could contribute to a similar degree and at a similar time to temporal changes in ecosystem functions, but their respective contribution depended on the speed of trait adaptation, the trait range between similar functional groups and trophic interactions. We thus suggest to consider multiple facets of diversity and their corresponding sources of adaptive potential to deepen our mechanistic understanding of BEF relationships, especially in the context of rapid biodiversity change.

Publisher

Wiley

Reference48 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3