Co‐occurring intertidal ecosystem engineers with opposing growth strategies show opposite responses to environmental gradients during establishment

Author:

van de Ven Clea N.12ORCID,van der Heide Tjisse12,Bouma Tjeerd J.34,van Ijzerloo Lennart3,Lindhout Djeli D.1,Reijers Valérie C.4

Affiliation:

1. Department of Coastal Systems, Royal Netherlands Institute for Sea Research and Utrecht University Netherlands

2. Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen Groningen Netherlands

3. Department of Estuarine and Delta Systems, Royal Netherlands Institute for Sea Research and Utrecht University Yerseke Netherlands

4. Department of Physical Geography, Faculty of Geosciences, Utrecht University Utrecht the Netherlands

Abstract

Coastal vegetated ecosystems including mangroves, seagrasses, and salt marshes are often shaped by positive plant–environment feedbacks. Plants improve their own living conditions with increasing patch size and density by attenuating hydrodynamics and stabilizing sediments. As these habitat modifications are critical for survival and growth, the positive density‐dependent nature of these feedbacks can lead to establishment thresholds for young plants in absence of mature conspecifics. Although feedback strength is known to depend on hydrodynamic exposure and plant traits (e.g. stiff versus flexible stems), it remains unclear how 1) opposing morphological plant traits affect establishment in contrasting environments, and 2) whether trait plasticity influences establishment success. Here, we investigate this by transplanting two tidal species with opposing growing strategies – Spartina anglica forms tussocks of stiff stems while Zostera noltii forms patches of stress‐avoiding flexible shoots – from two different donor sites in eight experimental locations. Results show that the survival and growth of both species was most successful at field locations with diverging environmental characteristics, while overall survival was highest for Z. noltii. Mainly, S. anglica survival was highest at locations with high organic matter and silt content and higher elevation relative to the tidal amplitude. In contrast, Z. noltii survival was highest at locations with larger grainsize and lower relative elevations. Furthermore, despite initial differences in plant traits between the two donor sites of Z. noltii, we found no effects of donor origin. Contrastingly, we found a significant effect of donor origin on S. anglica growth, even though transplants from the two donor sites showed no initial trait differences. Collectively, these results suggest that the stress‐tolerance strategy of S. anglica hampers establishment in exposed conditions, whereas the stress‐avoiding Z. noltii appears to be more susceptible to stress from desiccation and silty sediments.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3