Is phase locking crucial to improve hearing thresholds in tinnitus patients?

Author:

Schulze Holger1,Tziridis Konstantin1ORCID

Affiliation:

1. Experimental Otolaryngology University of Erlangen‐Nuremberg Erlangen Germany

Abstract

AbstractTemporal processing of auditory data plays a crucial role in our proposed model of tinnitus development through stochastic resonance (SR). The model assumes a physiological mechanism optimizing auditory information transmission (as quantified by autocorrelation [AC] analysis) into the brain by adding the optimal amount of neuronal noise to otherwise subthreshold signals. We hypothesize that this takes place at the second synapse of the auditory pathway in the dorsal cochlear nucleus (DCN). We propose that after hearing loss, this neuronal noise is increased in the affected frequency band to improve hearing thresholds at the cost of upward propagation of this added noise, which finally may be perceived as tinnitus. We already showed the improvement of hearing thresholds in a large population of patients. Until now, we did not investigate the differences in hearing thresholds based on the biological constraints of early auditory temporal processing (phase locking) that is only possible up to frequencies of 5 kHz.In this report, we grouped our patient database (N = 47,986) according to tinnitus pitch (TP) of below (TP<5kHz) or above (TP>5kHz) the 5 kHz limit or having no tinnitus (NT) and compared their mean audiograms. We found that TP<5kHz patients showed significantly better hearing thresholds than all other patient groups independent of age. No improvement was seen for TP>5kHz patients who even showed worse thresholds than NT patients for high frequencies.These results are further evidence for our SR model of tinnitus development and the existence of AC analysis at the level of the DCN.

Publisher

Wiley

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3