Combining species distribution models and moderate resolution satellite information to guide conservation programs for reticulated giraffe

Author:

Crego R. D.12ORCID,Fennessy J.2ORCID,Brown M. B.12ORCID,Connette G.1ORCID,Stacy‐Dawes J.3ORCID,Masiaine S.4ORCID,Stabach J. A.1ORCID

Affiliation:

1. Conservation Ecology Center Smithsonian National Zoo, Conservation Biology Institute Front Royal VA USA

2. Giraffe Conservation Foundation Windhoek Namibia

3. Conservation Science & Wildlife Health San Diego Zoo Wildlife Alliance Escondido CA USA

4. Twiga Walinzi, Loisaba Conservancy Nanyuki Kenya

Abstract

AbstractThe conservation of threatened and rare species in remote areas often presents two challenges: there may be unknown populations that have not yet been documented and there is a need to identify suitable habitat to translocate individuals and help populations recover. This is the case of the reticulated giraffe (Giraffa reticulata), a species of high conservation priority for which: (a) there may be unknown populations in remote areas, and (b) detailed maps of suitable habitat available within its range are lacking. We implemented a species distribution modeling (SDM) workflow in Google Earth Engine, combining GPS telemetry data of 31 reticulated giraffe with Landsat 8 OLI, Advanced Land Observing Satellite Phased Arrayed L‐band Synthetic Aperture Radar, and surface ruggedness layers to predict suitable habitat at 30‐m spatial resolution across the potential range of the species. Models had high predictive power, with a mean AUC‐PR of 0.88 (SD: 0.02; range: 0.86–0.91), mean sensitivity of 0.85 (SD: 0.04; range: 0.80–0.91), and mean precision was 0.81 (SD: 0.02; range: 0.79–0.83). Model predictions were also consistent with two independent validation datasets, with higher predicted suitable habitat values at known occurrence locations than at a random set of locations (P < 0.01). Our model predicted a total of 5519 km2 of potentially suitable habitat in Kenya, 963 km2 in Ethiopia, and 147 km2 in Somalia. Our results indicate that is possible to combine moderate spatial resolution imagery with telemetry data to guide conservation programs of threatened terrestrial species. We provide a free web app where managers can visualize and interact with the 30 m resolution map to help guide future surveys to search for existing populations and to inform future reintroduction assessments. We present all analysis code as a framework that could be adapted for other species across the globe.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3