Melanocortin‐4 receptor and proopiomelanocortin: Candidate genes for obesity in domestic shorthair cats

Author:

Jerjen C. P.1,Kumaran S. J.1,Liesegang A.2,Hall E.1,Wichert B.2,Haase B.1ORCID

Affiliation:

1. Faculty of Science, Sydney School of Veterinary Science University of Sydney Camperdown New South Wales Australia

2. Vetsuisse Faculty, Institute of Animal Nutrition and Dietetics University of Zurich Zurich Switzerland

Abstract

AbstractObesity is an escalating global health problem affecting both humans and companion animals. In cats it is associated with increased mortality and multiple diseases, including diabetes mellitus. Two genes coding for proteins known to play a critical role in energy homeostasis across species are the proopiomelanocortin (POMC) gene and the melanocortin‐4 receptor (MC4R) gene. A missense variant in the coding sequence of the feline MC4R (MC4R:c.92C>T) has been reported to be associated with diabetes and overweight in domestic shorthair cats, and while variants in the POMC gene are known to cause obesity in humans and dogs, variants in POMC and their association with feline obesity and diabetes mellitus have not been investigated to date. The current study aimed to assess the association between the previously described MC4R variant and body condition score (BCS), as well as body fat content (%BF) in 89 non‐diabetic domestic shorthair cats. Furthermore, we investigated the feline POMC gene as a potential candidate gene for obesity. Our results indicate that the MC4R:c.92C>T polymorphism is not associated with BCS or %BF in non‐diabetic domestic shorthair cats. The mutation analysis of all POMC exons identified two missense variants, with a variant in exon 1 (c.28G>C; p.G10R) predicted to be damaging. The variant was subsequently assessed in all 89 cats, and cats heterozygous for the variant had a significantly increased body condition score (p = 0.03) compared with cats homozygous for the wild‐type allele. Results from our study provide additional evidence that the previously described variant in MC4R is not associated with obesity in domestic shorthair cats. More importantly, we have identified a novel variant in the POMC gene, which might play a role in increased body condition score and body fat content in domestic shorthair cats.

Publisher

Wiley

Subject

Genetics,Animal Science and Zoology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3