Cardiac Safety of Neuromuscular Incapacitating Defensive Devices

Author:

McDANIEL WAYNE C.,STRATBUCKER ROBERT A.,NERHEIM MAX,BREWER JAMES E.

Abstract

Neuromuscular incapacitation (NMI) devices discharge a pulsed dose of electrical energy to cause muscle contraction and pain. Field data suggest electrical NMI devices present an extremely low risk of injury. One risk of delivering electricity to a human is the induction of ventricular fibrillation (VF). We hypothesized that inducing VF would require a significantly greater NMI discharge than a discharge output by fielded devices. The cardiac safety of NMI discharges was studied in nine pigs weighing 60 ± 28 kg. The minimum fibrillating level was defined as the lowest discharge that induced VF at least once, the maximum safe level was defined as the highest discharge which could be applied five times without VF induction, and the VF threshold was defined as their average. A safety index was defined as the ratio of the VF threshold to the standard discharge level output by fielded NMI devices. A VF induction protocol was applied to each pig to estimate the VF threshold and safety index. The safety index for stored charge ranged from 15X to 42X as weight increased from 30 to 117 kg (P < 0.001). Discharge levels above standard discharge and weight were independently significant for predicting VF inducibility. The safety index for an NMI discharge was significantly and positively associated with weight. Discharge levels for standard electrical NMI devices have an extremely low probability of inducing VF.

Publisher

Wiley

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the electrical safety of dielectric elastomer actuators in proximity to the human body;Smart Materials and Structures;2017-09-29

2. Use of Force in the Prehospital Environment;The Diagnosis and Management of Agitation;2017-02-15

3. Electronic Magnetic Interference and Magnetic Resonance Compatibility;Clinical Cardiac Pacing, Defibrillation and Resynchronization Therapy;2017

4. Validity of the small swine model for human electrical safety risks;2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC);2016-08

5. Restraint Techniques, Injuries, and Death: Conducted Energy Devices;Encyclopedia of Forensic and Legal Medicine;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3