AtMAC stabilizes the phragmoplast by crosslinking microtubules and actin filaments during cytokinesis

Author:

Du Pingzhou1,Liu Yu1,Deng Lu1,Qian Dong2,Xue Xiuhua1,Yang Ting1,Li Tonghui1,Xiang Yun2,Ren Haiyun1ORCID

Affiliation:

1. Center for Biological Science and Technology, Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Zhuhai‐Macao Biotechnology Joint Laboratory, Advanced Institute of Natural Science Beijing Normal University Zhuhai 519087 China

2. MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences Lanzhou University Lanzhou 730000 China

Abstract

AbstractThe phragmoplast, a structure crucial for the completion of cytokinesis in plant cells, is composed of antiparallel microtubules (MTs) and actin filaments (AFs). However, how the parallel structure of phragmoplast MTs and AFs is maintained, especially during centrifugal phragmoplast expansion, remains elusive. Here, we analyzed a newArabidopsis thalianaMT and AF crosslinking protein (AtMAC). When AtMAC was deleted, the phragmoplast showed disintegrity during centrifugal expansion, and the resulting phragmoplast fragmentation led to incomplete cell plates. Overexpression of AtMAC increased the resistance of phragmoplasts to depolymerization and caused the formation of additional phragmoplasts during cytokinesis. Biochemical experiments showed that AtMAC crosslinked MTs and AFsin vitro, and the truncated AtMAC protein, N‐CC1, was the key domain controlling the ability of AtMAC. Further analysis showed that N‐CC1(51–154) is the key domain for binding MTs, and N‐CC1(51–125) for binding AFs. In conclusion, AtMAC is the novel MT and AF crosslinking protein found to be involved in regulation of phragmoplast organization during centrifugal phragmoplast expansion, which is required for complete cytokinesis.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Plant Science,General Biochemistry, Genetics and Molecular Biology,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3