Do biological control agents adapt to local pest genotypes? A multiyear test across geographic scales

Author:

Gibson Amanda Kyle1ORCID,Mundim Fabiane M.12ORCID,Ramirez Abbey L.1,Timper Patricia3

Affiliation:

1. Department of Biology University of Virginia Charlottesville Virginia USA

2. Department of Biology Utah State University Logan Utah USA

3. United States Department of Agriculture Agricultural Research Service Tifton Georgia USA

Abstract

AbstractParasite local adaptation has been a major focus of (co)evolutionary research on host–parasite interactions. Studies of wild host–parasite systems frequently find that parasites paired with local, sympatric host genotypes perform better than parasites paired with allopatric host genotypes. In contrast, there are few such tests in biological control systems to establish whether biological control parasites commonly perform better on sympatric pest genotypes. This knowledge gap prevents the optimal design of biological control programs: strong local adaptation could argue for the use of sympatric parasites to achieve consistent pest control. To address this gap, we tested for local adaptation of the biological control bacterium Pasteuria penetrans to the root‐knot nematode Meloidogyne arenaria, a global threat to a wide range of crops. We measured the probability and intensity of P. penetrans infection on sympatric and allopatric M. arenaria over the course of 4 years. Our design accounted for variation in adaptation across scales by conducting tests within and across fields, and we isolated the signature of parasite adaptation by comparing parasites collected over the course of the growing season. Our results are largely inconsistent with local adaptation of P. penetrans to M. arenaria: in 3 of 4 years, parasites performed similarly well in sympatric and allopatric combinations. In 1 year, however, infection probability was 28% higher for parasites paired with hosts from their sympatric plot, relative to parasites paired with hosts from other plots within the same field. These mixed results argue for population genetic data to characterize the scale of gene flow and genetic divergence in this system. Overall, our findings do not provide strong support for using P. penetrans from local fields to enhance biological control of Meloidogyne.

Funder

National Institute of General Medical Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3