OsGLP3‐7 positively regulates rice immune response by activating hydrogen peroxide, jasmonic acid, and phytoalexin metabolic pathways

Author:

Sun Bingrui1,Li Wenyan2,Ma Yamei1,Yu Ting2,Huang Wenjie2,Ding Jierong1,Yu Hang1,Jiang Liqun1,Zhang Jing1,Lv Shuwei1,Yang Jianyuan3,Yan Shijuan2,Liu Bin1,Liu Qing1ORCID

Affiliation:

1. Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Engineering Laboratory Rice Research Institute, Guangdong Academy of Agricultural Sciences Guangzhou China

2. Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization Agro‐Biological Gene Research Center, Guangdong Academy of Agricultural Sciences Guangzhou China

3. Guangdong Key Laboratory of New Technology in Plant Protection Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences Guangzhou China

Abstract

AbstractAlthough germin‐like proteins (GLPs) have been demonstrated to participate in plant biotic stress responses, their specific functions in rice disease resistance are still largely unknown. Here, we report the identification and characterization of OsGLP3‐7, a member of the GLP family in rice. Expression of OsGLP3‐7 was significantly induced by pathogen infection, jasmonic acid (JA) treatment, and hydrogen peroxide (H2O2) treatment. OsGLP3‐7 was highly expressed in leaves and sublocalized in the cytoplasm. Overexpression of OsGLP3‐7 increased plant resistance to leaf blast, panicle blast, and bacterial blight, whereas disease resistance in OsGLP3‐7 RNAi silenced plants was remarkably compromised, suggesting this gene is a positive regulator of disease resistance in rice. Further analysis showed that OsGLP3‐7 has superoxide dismutase (SOD) activity and can influence the accumulation of H2O2 in transgenic plants. Many genes involved in JA and phytoalexin biosynthesis were strongly induced, accompanied with elevated levels of JA and phytoalexins in OsGLP3‐7‐overexpressing plants, while expression of these genes was significantly suppressed and the levels of JA and phytoalexins were reduced in OsGLP3‐7 RNAi plants compared with control plants, both before and after pathogen inoculation. Moreover, we showed that OsGLP3‐7‐dependent phytoalexin accumulation may, at least partially, be attributed to the elevated JA levels observed after pathogen infection. Taken together, our results indicate that OsGLP3‐7 positively regulates rice disease resistance by activating JA and phytoalexin metabolic pathways, thus providing novel insights into the disease resistance mechanisms conferred by GLPs in rice.

Publisher

Wiley

Subject

Plant Science,Soil Science,Agronomy and Crop Science,Molecular Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3