Opening the black box: Personalizing type 2 diabetes patients based on their latent phenotype and temporal associated complication rules
Author:
Affiliation:
1. Department of Computer Science Brunel University London London UK
2. Department of Computer Science University of Pavia Pavia Italy
3. Unit of Endocrinology University of Pavia Pavia Italy
Publisher
Wiley
Subject
Artificial Intelligence,Computational Mathematics
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1111/coin.12313
Reference50 articles.
1. YousefiL SaachiL BellazziR ChiovatoL TuckerA. Predicting comorbidities using resampling and dynamic Bayesian networks with latent variables. Paper presented at: 2017 IEEE 30th International Symposium on Computer‐Based Medical Systems (CBMS); IEEE;2017:205‐206.
2. YousefiL TuckerA Al‐luhaybiM SaachiL BellazziR ChiovatoL. Predicting disease complications using a stepwise hidden variable approach for learning dynamic Bayesian networks. Paper presented at: 2018 IEEE 31st International Symposium on Computer‐Based Medical Systems (CBMS); IEEE;2018:106‐111.
3. YousefiL SwiftS ArzokyM SaachiL ChiovatoL TuckerA. Opening the black box: discovering and explaining hidden variables in type 2 diabetic patient modelling. Paper presented at: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); IEEE;2018:1040‐1044.
4. YousefiL SwiftS ArzokyM SacchiL ChiovatoL TuckerA. Opening the black box: exploring temporal pattern of type 2 diabetes complications in patient clustering using association rules and hidden variable discovery. Paper presented at: 2019 IEEE 32nd International Symposium on Computer‐Based Medical Systems (CBMS); IEEE;2019:198‐203.
5. U.K. Prospective Diabetes Study 16: Overview of 6 Years' Therapy of Type II Diabetes: A Progressive Disease
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Predicting Urban Heat Island severity on the census-tract level using Bayesian networks;Sustainable Cities and Society;2023-10
2. Improved support vector machine classification for imbalanced medical datasets by novel hybrid sampling combining modified mega-trend-diffusion and bagging extreme learning machine model;Mathematical Biosciences and Engineering;2023
3. Identifying latent variables in Dynamic Bayesian Networks with bootstrapping applied to Type 2 Diabetes complication prediction;Intelligent Data Analysis;2022-03-14
4. Evaluation of Machine Learning Methods Developed for Prediction of Diabetes Complications: A Systematic Review;Journal of Diabetes Science and Technology;2021-11-03
5. Predicting Type 2 Diabetes Complications and Personalising Patient Using Artificial Intelligence Methodology;Type 2 Diabetes - From Pathophysiology to Cyber Systems;2021-09-22
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3