Extracellular regulated kinase-2 immunoreactivity increases in parallel with cervical intraepithelial neoplasia grade in cervical neoplasia

Author:

KAPETANIOS V.,LAZARIS A. C.,BOGRIS P.,KOUNELI S.,NONNI A.,ARVANITI H.,KOURI E.,TZAVARA M.,GIANNAKODIMOS G.,KOUTSELINI H.,PATSOURIS E. S.

Abstract

The cell cycle control system includes cyclins, cyclin-dependent kinases (CDK), and their inhibitors (CDK1). Extracellular regulated kinase (ERK1/2) (p44 and p42 mitogen-activated protein kinases [MAPKs]) is a component of the MAPK pathway, which is associated with cyclin D1 and CDK. It is a critical signaling system for the induction of cell proliferation, differentiation, and cell survival. The aim of this study was to investigate the usefulness of ERK2 expression as a marker of biological aggressiveness complementary to cervical intraepithelial neoplasia (CIN) grade as well as to compare its expression in preinvasive lesions with that in invasive carcinoma. Paraffin-embedded sections of 146 CIN lesions (32 CIN I, 49 CIN II, and 43 CIN III) and 22 invasive cervical carcinomas (13 squamous and 9 adenocarcinomas) were used for the standard immunohistochemical procedure with the application of the ERK2 monoclonal antibody. ERK2 staining displayed a cytoplasmic and nuclear pattern. The staining intensity was gradually increased according to the severity of the dysplastic lesions; ERK2 immunoreactivity was significantly increased in high-grade dysplastic lesions (CIN II and CIN III) and invasive carcinomas by comparison to low-grade dysplastic lesions (CIN I) (P< 0.001). When high-grade lesions were separately assessed, the differences between each one of them and CIN I retained their statistical significance: CIN II versus CIN I (P< 0.001) and CIN III versus CIN I (P< 0.001). In conclusion, our study found a direct relationship between the increasing grade of the dysplastic cervical lesions and the intensity of ERK2 staining, thus implying a role of ERK2 as an early event in cervical carcinogenesis.

Publisher

BMJ

Subject

Obstetrics and Gynaecology,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3