Human immune system development and survival of non-obese diabetic (NOD)-scid IL2rγnull (NSG) mice engrafted with human thymus and autologous haematopoietic stem cells

Author:

Covassin L1,Jangalwe S1,Jouvet N1,Laning J2,Burzenski L3,Shultz L D3,Brehm M A1

Affiliation:

1. Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA

2. Stem Cell Bank, University of Massachusetts Medical School, Worcester, MA, USA

3. The Jackson Laboratory, Bar Harbor, ME, USA

Abstract

Summary Immunodeficient mice bearing targeted mutations in the IL2rg gene and engrafted with human immune systems are effective tools for the study of human haematopoiesis, immunity, infectious disease and transplantation biology. The most robust human immune model is generated by implantation of human fetal thymic and liver tissues in irradiated recipients followed by intravenous injection of autologous fetal liver haematopoietic stem cells [often referred to as the BLT (bone marrow, liver, thymus) model]. To evaluate the non-obese diabetic (NOD)-scid IL2rγnull (NSG)–BLT model, we have assessed various engraftment parameters and how these parameters influence the longevity of NSG–BLT mice. We observed that irradiation and subrenal capsule implantation of thymus/liver fragments was optimal for generating human immune systems. However, after 4 months, a high number of NSG–BLT mice develop a fatal graft-versus-host disease (GVHD)-like syndrome, which correlates with the activation of human T cells and increased levels of human immunoglobulin (Ig). Onset of GVHD was not delayed in NSG mice lacking murine major histocompatibility complex (MHC) classes I or II and was not associated with a loss of human regulatory T cells or absence of intrathymic cells of mouse origin (mouse CD45+). Our findings demonstrate that NSG–BLT mice develop robust human immune systems, but that the experimental window for these mice may be limited by the development of GVHD-like pathological changes.

Funder

National Institutes of Health

Diabetes Endocrinology Research Center

University of Massachusetts Center for AIDS Research

Juvenile Diabetes Research Foundation

International and the Helmsley Charitable Trust

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3