Deep learning‐influenced joint vehicle‐to‐infrastructure and vehicle‐to‐vehicle communication approach for internet of vehicles

Author:

Mekala M. S.12,Dhiman Gaurav3ORCID,Patan Rizwan4ORCID,Kallam Suresh5,Ramana Kadiyala6,Yadav Kusum7,Alharbi Ali O.7

Affiliation:

1. Department of Information and Communication Engineering Yeungnam University Gyeongsan South Korea

2. RLRC for Autonomous Vehicle Parts and Materials Innovation Yeungnam University Gyeongsan South Korea

3. Department of Computer Science Engineering, Government Bikram College of Commerce Punjabi University Patiala India

4. Decentralized Science Lab (dSL), College of Computing and Software Engineering (CCSE) Marietta Georgia USA

5. Department of Computer Science Engineering Sree Vidyanikethan Engineering College Tirupati India

6. Department of Artificial Intelligence & Data Science Annamacharya Institute of Technology and Sciences Rajampet India

7. College of Computer Science Engineering University of Ha'il Ha'il Kingdom of Saudi Arabia

Funder

National Research Foundation of Korea

Publisher

Wiley

Subject

Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Control and Systems Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling a LoRAWAN Network for Vehicle Wildlife Collision Avoidance System on Rural Roads;Mobile Networks and Applications;2024-08-10

2. Task offloading for edge-IoV networks in the industry 4.0 era and beyond: A high-level view;Engineering Science and Technology, an International Journal;2024-06

3. Modeling a LoRAWAN Network for Vehicle Wildlife Collision Avoidance System on Rural Roads;2024-04-05

4. Internet of Vehicle Moving Objects Detection System for the Rural Road Networks;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2023-12-15

5. DQN Algorithm for network resource management in vehicular communication network;International Journal of Information Technology;2023-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3