Approximate Bayesian Computation applied to time series of population genetic data disentangles rapid genetic changes and demographic variations in a pathogen population

Author:

Saubin Méline12ORCID,Tellier Aurélien2ORCID,Stoeckel Solenn3ORCID,Andrieux Axelle1,Halkett Fabien1ORCID

Affiliation:

1. Université de Lorraine, INRAE, IAM Nancy France

2. Department for Life Science Systems Technical University of Munich Freising Germany

3. INRAE, Agrocampus Ouest Université de Rennes, IGEPP Le Rheu France

Abstract

AbstractAdaptation can occur at remarkably short timescales in natural populations, leading to drastic changes in phenotypes and genotype frequencies over a few generations only. The inference of demographic parameters can allow understanding how evolutionary forces interact and shape the genetic trajectories of populations during rapid adaptation. Here we propose a new Approximate Bayesian Computation (ABC) framework that couples a forward and individual‐based model with temporal genetic data to disentangle genetic changes and demographic variations in a case of rapid adaptation. We test the accuracy of our inferential framework and evaluate the benefit of considering a dense versus sparse sampling. Theoretical investigations demonstrate high accuracy in both model and parameter estimations, even if a strong thinning is applied to time series data. Then, we apply our ABC inferential framework to empirical data describing the population genetic changes of the poplar rust pathogen following a major event of resistance overcoming. We successfully estimate key demographic and genetic parameters, including the proportion of resistant hosts deployed in the landscape and the level of standing genetic variation from which selection occurred. Inferred values are in accordance with our empirical knowledge of this biological system. This new inferential framework, which contrasts with coalescent‐based ABC analyses, is promising for a better understanding of evolutionary trajectories of populations subjected to rapid adaptation.

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3