The Headache-Inducing Effect of Cilostazol in Human Volunteers

Author:

Birk S1,Kruuse C1,Petersen KA1,Tfelt-Hansen P1,Olesen J1

Affiliation:

1. Danish Headache Centre and Department of Neurology, University of Copenhagen, Glostrup University Hospital, Copenhagen, Denmark

Abstract

We have previously shown that nitric oxide (NO) and cyclic guanosine monophosphate (GMP) may cause headache and migraine. However, not all findings in previous studies can be explained by an activation of the NO-cGMP pathway. Calcitonin gene-related peptide (CGRP) causes headache and migraine in migraine patients, but CGRP receptor activation causes an increase in cyclic adenosine monophosphate (cAMP). In order to investigate the role of cAMP in vascular headache pathogenesis, we studied the effect of cilostazol, an inhibitor of cAMP degradation, in our human experimental headache model. Twelve healthy volunteers were included in a double-blind, randomized, crossover study. Placebo or cilostazol (200 mg p.o.) was administered on two separate study days. Headache was scored on a verbal rating scale (0-10) and mechanical pain thresholds were measured with von Frey hairs. The median peak headache score 0-16 h postdose was 0 (range 0-2) after placebo and 3.5 (range 0-7) after cilostazol ( P = 0.003). The median headache curve peaked at 6-9 h postdose. The headaches induced were usually bilateral and pulsating. Nausea occurred in two volunteers, photo- and phonophobia were not seen. Two volunteers had a headache that fulfilled International Headache Society criteria for migraine without aura after cilostazol. No change in mechanical pain thresholds in the forehead was seen ( P = 0.25). The headache after cilostazol was equal to or more severe than headache induced by glyceryl trinitrate in previous experiments. The present study thus indicates that increased levels of cAMP may play a role in headache and migraine pathogenesis.

Publisher

SAGE Publications

Subject

Neurology (clinical),General Medicine

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3